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Abstract

A major challenge facing statistical agencies is the problem of adjusting price and
guantity indexes for changes in the availability of commeslitiThis problem arises in

the scanner data context as products& tommodity stratum appear and disappear in

retail outlets. Hicks suggested a reservation price methodology for dealing with this
problem in the context of the economic approach to indexbeu theory. Feenstra and
Hausman suggested specific methods for implementing the Hicksian approach. The
present paper evaluates these approaches and suggests some alternative approaches to the
estimation of reservation prices. The various approachesrgalemented using some

scanner data on frozen juice products that are available online.
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1. Introduction

One of the more pressing problems facing statistical agencies and economic analysts is
the new goods (and services) problem; i.e., how should the intradwdétieew products

and the disappearance of (possibly) obsolete products be treated in the context of forming
a consumer price index? Hicks (1940) suggested a general approach to this measurement
problem in the context of the economic approach to index authieory His approach

was to apply normal index number theory but estimate hypothetical prices that would
induce utility maximizing purchasers of a related group of products to demand 0 units of
unavailable productWith these virtual (or reservatiom amputed) pricesin hand, one

can just aply normal index number theory using the augmented mtata and the
observedguantity dataThe practical problem facing statistical agenciesias: exactly

are these virtual prices to be estimated?

Economistshave been worrying about the new goods probétrteastsince theearly
contributions of Lehr (1885; 486) and Marshall (1887; 37374), who independently
introduced the concept @fiained index numbers in order to deal with this problefn.
These authorsuggested that the best way to deal with the problem was to use the price
and guantity data for adjacent periods and use a suitable index number formula on the set
of products that were present in both periods. Keynes (193@10&)>endorsed the idea

of restricting index number comparisons to the set of products that were present in both
periods being compared but he preferred to usenthigmum overlap method ® in the
context of fixed base indexelde rejected the idea of using chained indexes because he
felt that chained indexes would suffer frome/ain drift problem.® Indeed, we will find

that the problem of chain drift is a serious ameen calculating pricendexes using
scanner datan the sales of a retail outlet

Following up on the contributionf Hicks, many authors developed bounds or rough
approximations to the bias that might result from omitting the contribution of new goods
in the consumer price index conteXthus Rothbarth (1941) attempted to find some

20The same kind of device can be used in another difficult case, that in which new sorts of goods are
introduced in the interval between the two situations we@rgaring. If certain goods are available in the

Il situation which were not available in the | situation, th@ corresponding to these goods become
indeterminate. The:@s and-§s are given by the data and t@scare zero. Nevertheless, althouglpibs

cannot be determined from the data, since the goods are not sold in the | situation, it is apparent from the
preceding argument what®s ought to be introduced in order to make the indesoer tests hold. They

are those prices which, in the | sifoat would;ust make the demands for these commodities (from the
whole community) equal to zero.0 J.R. Hicks (1940; 1#éfsten (1952; 987) extended HicksO
methodology to cover the case of disappearing goods as well.

3 Rothbarth introduced the termifual pricesO to describe these hypothetical prices in the rationing
context: O shall call the price system which makes the quantities actually consumded rationing an
optimum the @rtual price ystem.0O. E. Rothbarth (1941; 100).

4 See Diewert (393a; 5263) for additional material on the early history of the new goods problem.

5 Keynes (1930; 94) called this thgshest common factor method.

6 Keynes noted that chained index numbers failed WalshOs (190%:888riod identity test which is

the following test: P(hp?,qt, AP (PP’ . )PP .pL%,at) = 1 where P(pp?,aL,f) is the bilateral index
number formula which is being used. The divergence of the product of the 3 indexes from 1 serves as a
measure of the amount of chain drift.



bounds for the bias while Hofsten9@2; 4750) discussed a variety of approximate
methods to adjust for quality change in products, which is essentially the same problem
as adjusting an index for the contribution of a new product. Diewert (198653198
developed some bounds for the biasaimaximum overlap Fishét922)index relative

to the bias that would result from using the Fisher forraddare O prices and quantities
were used in the Fisher formula for the base period when a new product was not
available’ Additional bias formulae ere developed by Diewe(1987; 779)(1998; 51

54) and Hausman (2003;-28). These approximations relied oriormation(or guesses)
about expenditure sharedasticitiesor ratios of virtual prices to actual prices. We will
examine the Hausmapproximae formula in moredetail in section 11 below.

We turn now to methods that rely on some form of econometric estimation in order to
form estimates of the welfare cost (or changes in the true cost of living index) of changes
in product availability. The two main contributors in this area dfeenstra (1994) and
Hausman (1996) Econometric methods for adjusting price and quantity indexes will be
the main focus of this study. We will apply various econometric methods in order to
adjust a consumer price indéxr changes in the availability of products. We vailso

obtain econometric estimates for the virtual prices for unavailable products for each
period in our sample period. We will test out our suggested methods on a scanner data set
that is available otine.® The data set is listed yppendixA so that researchers can use

this data set to test out possible improvements to our suggested methodology.

FeenstraOs (1994) methodology rests on the properties of the CES unit cost fdisction.
methodology is ¥plained in section 2. In section 3, we adapt his methodology to the case

of a CES utility function. Section 4 introduces our scanner data set which we use to test
out FeenstraOs methodology. Section 5 estimates a CES unit cost function using our data
setwhile section 6 estimates a CES direct utility function. Both systems of estimating
equations use the sales shares of the 19 products in our sample as the dependent variables
in a systems regression approach. If either the CES unit cost function modelQE$
homogeneous utility model were to fit the sample data perfectly, we would obtain exactly
the same results. However, neither model fits the data exactly. We find that the CES
utility function model fits the data much better than the CES unit costidmnmodel.

There are two problems with the CES unit cost function methodology:

¥ The CES functional form is not fully flexibiéand

¥ The reservation price that induces a potential purchaser fgurchase a product
is equal to plus infinity, which seentsgh. Thus the CES methodology may
overstate the benefits of increases in product availability.

" Diewert (1980; 501) concluded that both Fisher price indexes would probably have an upward bias but the
index which used zeros would definitely have a larger bias than the maximum overlap Fisher index. The
similar type of argument appears in Diewert (1987; 779)

8 See also Hausman (1999) (2003) and Hausman and Leonard (2002)

® The data are described in section 4 below.

10 See Diewert (1974) (1976) for the definition of a flexible functional form.



Thus in section 7, we replace the CES utility function with a flexible functional form
which was initially due to KonYs and Byushgens (192@;). This utilty function is u =

f(q) ! (q"AQ)Y2 where A is a symmetric matrix of parameters ahdscthe row vector
transpose of the column vector of quantities purchageldonYs and Byushgens showed
that if purchasers maximized this utility function in two periodsere they faced the
price vectors pand @ and the utility maximizingectors were fland d, then the utility

ratio, f(g?/f(q'), is equal to the Fisher (1922) quantity inde@g(p',p? %) !
[PY?p? ¥ ptTgtp?gl].tt Thus we will call this functioal formfor f the KBF functional

form. The advantage in working with this flexible functional form is that when some
component of the g vector is equal to 0, the resulting utility function is still well defined
and the corresponding reservation price carcddculated by partially differentiating the
estimated utility function with respect to the quantity variable that happens to equal O in
the period under consideration. In fact, Diewert (1980-5083) suggested exactly this
methodological approach to thestimation of reservation prices but in the end, he
suggested that it would be difficult to estimate all of the N(N+1)/2 unknown parameters
in the A matrix. In the present paper, we solve this degrees of freedom problem by
introducing asemiflexible version of the flexible KBF functional form? This new
methodology is explained in section Ih. section 8, we attempt to estimate the KBF
functional form using the usual systems approach to the estimation of consumer demand
functions. However, the nonlinearityn our estimating share equations causes our
nonlinear estimating procedure to come to a premature halt as we increase the rank of the
A matrix. Hence in section 9, we drop the systems approach to the estimation of the
unknown parameters in favour of tbee big equation approach. The latter approach has
the advantage of being able to drop the observations where a product was missing.

Although the implied fits in the product share equations were quite good using our one
big equation approach, when we redrom predicted shares generated by our estimates
to predicted prices, we found that predicted prices did not match up well with actual
prices for the observations where products were present. Thus in section 10, we moved
from shares as the dependentiafales to using prices as the dependent varialilies.
continued to estimate higher rank A matrices using the one big equation approach with
prices as the dependent variables until we estimated a rank 7 A matrix with 111 unknown
parameters. We then used @stimated A matrix in order to define virtual or reservation
prices for the unavailable products. We were also able to quantify the effects of the
changing availability of products and compare the results of the KBF estimation with the
earlier CES benefineasures. We found that the CES methodology did indeed give much

1 KonYs and Byushgens (1926; 1BE2) also introduced the KBF itircost function, c(p) (p'Bp)Y?

where B is a symmetric matrix of parameters. They showed that this unit cost function functional form is
exact for the Fisher price index. If A or B is of full rank, then B =. Aor a description of the
contributions oKonYs and Byushgens to index number theory and duality theory, see Diewert (1993a; 47
51). For a description of the regularity conditions that the matrices A and B must satisfy for the KBF f(q) or
c(p) to be well behaved, see Diewert and Hill (2010). Bi#W1976) generalized the KB results to more
general functional forms for f and c.

2 Qur new semiflexible functional form has properties that are similar to the semiflexible generalization of
the Normalized Quadratic functional form introduced by Di¢weed Wales (1987) (1988). In section 7
below, we also show how the correct curvature conditions can be imposed on our semiflexible KBF
functional form.



higher estimates for the gains from increases in product availability as compared to our
KBF methodology.

However, due to the fact that our estimated KBF preferences did not fit thexdetly,e

we found that occasionally our estimated gain from having an additional product had the
wrong sign. Thus in section 11, we developed an alternative methodological approach
based on ouestimatedKBF utility function (which is well behaved by consttion) that

was free from anomalous results. Thisity function basedpproach is an alternative to
Hausmarg(1996)expenditureor cost functionapproach to measuring the gains from
increases in product availability.

In section 12, we compare Hausriss approximate approachateariant ofour approach
where we use aesond order approximation to the estimated utility functiom.keep
things simple, we consider only the case of two products in this section. We obtain a
rather surprisingquivalenceesult.

Section 13 concludes.

Appendix B tries out Feenstrafsble differencing method for estimating the elasticity

of substitution but we apply it to the direct utility estimation of the CES functional form
rather than estimating the dual CES unistctunction. We find that this method for
estimating the elasticity of substitution worked very well on our scanner data set.

2. FeenstraOs CESnit Cost Function Methodology

In this section, we will explain FeenstraOs (1994) CES cost funutithodology that he
proposed to measure the benefits and costs to consumers due to the appearance of new
products and the disappearance of existing products.

The methodology assumes that purchasers of a grouppwbdNicts all have the same
linearly honogeneous, concave and nondecreasing utility function f(g), where the
nonnegative vector of purchased products Is(q,...,0n) # On and u = f(q)# O is the

utility that the vector of purchases q generates. Given that purchasers face the positive
vector d prices p! (pu...,n) at an outlet, the unit cost function c(p) that is dual to the
utility function f is defined ashe minimum cost of attaining the utility levislat isequal

to one:

(1) c(p)! minq{f(q) # 1; g # On}.

If the unit cost function @) is known, then using duality theory, it is possible to recover
the underlying utility function f(q}2 Feenstra assumekat the unit cost function has the
following CESfunctional form:

131t can be shown that for g >x,0f(q) = 1/max {c(p): $n=1" pngn %1 ; p# On}; see Diewert (1974110
112) (1993b; 129) on the duality between linearly homogeneous aggregator functions f(q) and unit cost
functions c(p).



(2) c(p)! &o[' n=1" &npn™ (JHHO if ()1
I & * n=1V pp if (=1

where the&; and( are nonnegative parameters with:N & = 1. The unit cost function
definedby (2 is aConstant Elasticity of Substitution (CES) utility function which was
introduced into the economics literature by Arrow, Chenery, Minhas and Solow {41961)
The paramete( is the elasticity of substitution;*® when ( = 0, the unit cosfunction
defined by (2 becomes linear in prices and hence corresponds to a fixed coefficients
aggregator function which exhibits 0 substitutability between all commodities. \Wken

1, the corresponding aggregator or utility function is a Gbbliglas function. Whef
approaches +, the corresponding aggregator function f approaches a linear aggrega
function which exhibits infinite substitutability between eacin painputs.The CES unit
cost function defiad by (3 is of coursenot a fully flexible functional form (uless the
number of commodities NHeing aggregated is 2) but it is considerahlyre flexible than
the zero substitutability aggregator functionqtis the special case of)(@here( is set
equal to zero) that is exact for thadpeyres and Paasche price imdex

In order tosimplify the notation, we set ¥ 1 " (. Under the assuption of cost
minimizing behavioron the part of purchasers of the N productspienod t=1,...,T,
Shephard061953; 11) Lemmatells us that the observegeriod t consumption of
commodity i, ¢, will be equal to bc(p)/, pi where, c(p)/, pi is the frst order partial
derivative of the unit cost function with respect to the ith commaqutitye evaluated at
the period fprices and = f(qf) is the aggregat@unobservable) level of periodutility.
Denote the share of product i in total sales of therdducts during period t ag &
pilg¥p-qtfori=1,..Nandt=1,... T wherég! $,-1" p.'g. Note that the assumption
of cost minimizingbehavior during each period impliggat the following equations will
hold:

(3) P = uc(p) ; t=1,..,T
where c is the CES unit cost function defined by (2).

Using the CIS functional form defined by J2and assuming thdt) 1 (or r) 0),*¢the
following equations are obtaineding ShephardOs Lemma

(4 ' = U&[" n=1" & (pn") T 1& (i)™ i=1EN;t=1,.T

1n the mathematics literature, this aggregator function or utility function is known as a mean ofl order r
1" (; see Hardy, Litewood and Poly} (1934; 413).

15 et ¢(p) be an arbitrary unit cost function that is twice continuously differentiBiieAllen (1938; 504)
Uzawa (1962)lasticity of substitution (n(p) between products n and k is defined as efp)c(p)c(p)

for n) k where the first and second order partial derivatives of c(p) are definatbps cc(p)/, p» and
cak(p) !, 2c(p)/, pn, px. For the CES unit cost functiatefined by (2) (n(p) = ( for all pairs of products;

i.e., the elasticity of substitution betweall pairs of products is a constant for the CES unit cost function.
When( = 1, we have the case of Ceblouglas preferences. In the remainder of this paper, we will
assume that > 1 (or equivalently, that r < 0).



= ue(p) & (P n=1N &a ()"

Premultiply euation i for period t in (4) byifp'-g’. Using (2) and (3), the resulting
equations can be rewritten fdlows:

5) st = & (pit)r/I n=1" &n (pnt)r ; i= 1,E,N; t=1,..T.

The NT share eauions defined by (5) can be used estimating equations using a
nonlinear regression approach. We will implement this approach later in the paper. Note
that thepositive scale parametefo cannot be identifiedising equations (5)which of
course is nor@l: utility can only be estimated up to an arbitrary scaling factor.
Henceforth, we will assum&, = 1. The share equatior{8) are homogeneous of degree
one in the parametess,...&v and thus the identifying restriction on these parameters,

' -1\ & = 1, can be replaced with an equivalent restriction suéxas1.

Suppose that all N products are available in all T periods in our sample and we have
estimated the unknown parameters which appear in equations (5). Thendéde CES

price index (relative to the level of prices for period 1)cdd, can be defined as the
following ratio of unit costs in period t relative to period 1:

(6) Peeg ! [ n=1" & (pn) T/ ' n=1™ & (pa?) T ; t=1,.,T.

Suppose further that the observed price and quantity data vectarsd, ¢pfort = 1,...,T,

satisfy equations (3) where c(p) is defined by (2) and the quantity data vétatisfy

the ShephardOs Lemma equations (4). Thus the observed price aitg datntare
assumed to be consistent with cost minimizing behavior on the part of purchasers where
all purchasers have CES preferences that are dual to the CES unit cost function defined
by (2). Then Sato (1976) and Vartia (1976) showed that the sequénC&S price
indexes defined by (&ould be numerically calculated just using the observed price and

quantity data; i.e., it would not be necessary to estimate the unkn&wand ( (or r)
parameters in equations (6). Tlhgarithm of the period t fixed ka Sato-Vartia Index

Ps\! is defined by the following equation:

(7) InPsvt ! $n=a™ wit In(pr/prd) ; t=1,..,T.

The weights W that appear in equations (7) are calculated m $tages. The first stage

set of weights is defined ast! (st " sb)/(Ins' " Ins!) forn=1,..,Nandt=1,..T
provided that 8) s If sit = s1, then define W' ! s! = s&. The second stage weights

are defined as w! wi"/$i-N wi" forn=1,..,N and t = 1,...,T. Note that in order for
InPced to be well defined, we require that 3 0, st >0, pt > 0 and pt > 0 for all n =
1,.,.Nand t=1,...,T; i.e., all prices and quantities must be positive for all products and
for all perials.

Now we can explaiffeenstraOs (1994) model wherewO commodities can appear and
OoldO commodities can disappear from period to period.



Feenstra (1994) assumE&&ES preferences with > 1 (orequivalently, r < 0). He applied
the reservationnce methodology first introduced by Hicks (1940); i.e., Hicks assumed
that the consumer had preferencesrailkegoods but for the goods which had not yet
appeared, there was a reservatite that would be justigh enoughthat consumers
would not wamnto purchase the good in the period under considergtibhnis assumption
works rather well with CES preferencés;cause we do not have to estimate these
reservation prices; they will all be equal to + when( > 1.

Feenstrallowed for new products tappear and for existing products to disappear from
period to period® Feenstraassumd that the set of commodisethat are available in
period t is I() for t = 1,...,T The (imputed)prices for the unavaildéd commodities in
each period areet equal ta-+ and thus if r < 0, an infinite priga' raised toa negative
power generates a O; i.é.product n is unavailable in period t, ther'( = (+)" =0 ifris
negative.

The CESperiod t true price levainder these conditions when r < Ontsirout tobe the
following CES unit cost function that is defined over only products that are available
during period t

@ c(P)! [' n=t" & (pa) T =" i 1y &i (AH)T"

Using equations (#for this new model and multiplying the period t demanidy the
corresponding pricei'pfor the items that are actually availabéads to the following
equatiors which describe the purchasersO noregrenditurs on producit in period t:

(9) plgt = U[" n 1) & (pn) T 2& ()" ; t=1,..T;i. I(t)
= uc(p) & (P n. 1) & (pn)" -

In each period t, the sum of observed expendit$es; pn'cn!, equals the period t utility
level, U, times the CES unit cost é(plefined by (8)

(10)$n. 19 pr'gn' = u'e(p) = ul' i 1o & (P ; t=1,.T.
Recall that the ith sales share of product i in period t was definéd g&'&"/$n. 11 pn'gn’

fort =1,...,T and.il(t). Using these share definitions and equations (10), we can rewrite
equations (9) in the following form:

(11) $' =& (PY" n 1)) & (P " ; t=1,.,T;i. I(t)
= &i (piY)/c(p)’

17 The same logic is applied tisappearing products.

18 |n many cases, a OnewO product is not a genuinely new product; it is just a product that was not in stock
in the previous period. Similarly, in many cases, a disappearing product is not necessarily a truly
disappearing product; is simple a product that was not in stock for the period under consideration. Many
retail chains rotate products, temporarily discontinuing some products in favour of competing products in
order to take advantage of manufacturer discounted prices foreskeproducts.



where the second set of equations follows using definitions (8).

Now we can wdk out Feensti@s (1994) model for measuring the benefits and costs of
new and disappearing commodities. Start with the period tCES exact price level
defined by (8 anddefine the CES fixed base price index for periodttdPas the ratio of

the perod t CES price level to the corresponding period 1 price lével:

(12) Pced ! c(p)/c(ph) ; t=1,.,T
=[ i & )TV e & () T
= [ Index 1] [Index 2} [Index 3]

where the threendexesn equations (12are defined as follows:

(13) Index 1! [' i, imoiwy) & (BT /[ i o & (pit) T4
(14 Index 2! [" i iy & (POYTY /' i oy & (pif) 17
(15) Index 3! [' i iwoiw & (PH) TV /[ 11w & (pit) 7"

Note that Index 1 defines a CES price index over the set of commoditiearéhat
available in both periods t and Renote the CES cost functiofi that has the sam&,
parameters as before but is now defined over only products that are available in periods 1
and t:

(16) ") ! [' i 1woiw) & (i) 1" t=1,2,.T.

The period t expenditurghare equations that correspond to equations (11) using the unit
cost function defined by (1&rethe following ones:

(17) s ! pi'gi/$n. 10)012) Palgnt t=1,..T;i. 1(1)0I(t)
=& (P n 1w)012) &n (Pa)"
= & (pi)7c" (P’

where the thirequality follows using definitios (16).

Note that Index 1 is equal t& @')/c"(p') and the Sat¥artia formula(7) ( restricted to
commodities n that are presein periods 1 and tfan be used teoalculate this index
using theobserved price and quantity data for the products that are available in both
periods 1 and t.

We turn now to the evaluation of Indexes 2 and 3. It turns out that we will need an
estimatefor the elasticity of substitutioq (or equivalently of r) in order to find empirical
expressions for these indexes. It is convenient to define the followingvable
expenditure or sales ratios:

91n the algebra which follows, the prices and quantities of period 1 can be replaced with the prices and
guantities of any period. Feenstra (1994) developed his algebra'jée(p{p).



(18) 1! " 1 i) patgn'/" n 101 Prignt ; t=1,,...,T.
(A9 u'! " niwoi Patanl" n. i1y POt ; t=1,..,T.

We assume that there is at least one product that is pregeeriods 1 and for each t

Let product i be any one of these common prodéatsa given t Then the share
equations (11) and (17) hold for this product. These share equations can be rearranged to
give us the following two equations:

(20) &P =[" n 10 & (P T Pi'GY[" n 1) PO ;
(21) &P =[" n1@oiw & (Pa)T PG n. 12)01@) PrCA].

Equating (20) to (21) leads to the following equadion

(22)" n 1ty & (Pa) " noi@oi) E&n(Pn) T =" n i) PO n. 1oy POt
=1t

where the last equality follows using definition (18). Now take the 1/r root of both sides
of (22) and use definitio(l4) in order to obtain the following equality:

(23) Index 2= [19¥ =" i. i o/ i 1wy P20

Again assume that product i is available in periods 1 and t. Rearrange the share equations
(11) and (17) for t = &nd product and we obtain the following two equations:

(23)&(PYH" =" n 1) & (Pa)T pra/[" n. 1) pton’] ;
(24) &(PEYH =" n 1@oiw & (Pnh)T pta/[" n 1@oie Plont].

Equating (23) to (24) leads to the following equations:

(25)" n 101 & (PAD)7 01w & (PAD) =" n @01 PrignY' n. i1y Pridnt
= ut

where the last equality follows using definition (19). Now take the 1/r root of both sides
of (25) and use definition (15) in order to obtain the following equélity:

20 |f new products become available in periodattvere not available in period 1, thdh> 1. Recall that r

=1" ( and r < 0. Index 2 evaluated at period t prices eqdf¢ £ (1)V* 0 and thus is an increasing
function of ( for 1 <( < ++. With 1' > 1, the limit of ()¥®'0 as( approacks 1 is 0 and the limit of
(1HY®'O as( approaches+ is 1. Thus the gains in utility from increased product variety are hygesif
slightly greater than 1 and diminish to no gains at afl kecomes very large. Suppose thiat1.05 and

=1.01, 11, 1.5, 2, 3, 5, 10 and 100. Then Index 2 will equal 0.0076, 0.614, 0.907, 0.952, 0.976, 0.988,
0.995 and 0.9995 respectively. Thus the gains from increased product variety are very sensitive to the
estimate for the elasticity of substitution. The gaiesgigantic if( is close to 1.

21 If some products that were available in period 1 become unavailable in period gi'tkeh. Index 3
evaluated at period 1 prices equal§*( = (u)¥® 0 and is an decreasing function (ffor 1 < ( < ++.

With pt < 1, the limit of ()Y O as( approaches 1 is+and the limit of g)¥®'O as( approaches+ is

1. Thus the losses in utility from decreased product variety are hygésislightly greater than 1 and
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(26) Index 3= L)Y =" n 1001 Prch" n. 1@y Paignt] "

Thus if r is known o has beerestimated, then Index 2 and Indexc&n readily be
calculated as simple ratios of sums of observable expenditures raised to th&/rmpower
Note thaf' i. i) p'g¥" i. w01y Pitaif] # 1. If period t has products that were not available
in period 1then the strict inequality will hold and sinté& < 0, it can be seen theitdex

2 will be less than unityThus Index 2 is a measure of how much the true cost of living
index isreduced in period t due to the introduction of products that were not available in
period 1. Similarly[' i o) pitai/ i i1y pitgil] %1. If period 1 has products that are not
available in period t, then the strict inequality will hold and sifrce O, it can be seen
that Index 3 will be greater than unity, Thus Index 3 is a measure of how much the true
cost of living index isncreased in period t due to the disappearance of products that were
available in period 1 but are not available in period t.

Turning briefly to the problems associated with estimating r (an&th&hen not all
products are available in all perigd$s can be seen that the initiaktimating share
equations (pare now replaad by the followingequations:

(27) ¢t = &n (p)" /Pk=1™ &k (p)" ; t=1,..,T;n. I(1).

In the next section, we obtain an alternative set of share equations that could be used in
order to estimate the elasticity of substitution.

3. The Primal Approach to the Estimation of CES Preferences

It turns out that estimating the purchaserOs utility function directly (rather than estimating
the dual unit cost function) is advantageous when estimates of reservation prices for
products that are not aNable are required. In the case of CES preferences, this
advantage is not apparent since @tESreservation prices are automatically set equal to
infinity. But it turns out that there may be advantages in estimating the CES utility
function directly beause of econometric considerations as we shall see later. Thus in this
section, we will derive thgurchaser demand functions that are consistent with the
maximization of a CES utility function.

Using the same notation that was used in the beginningeoprdvious section, we

assume that the purchaser utility function f(q) is defined as the follo@E®yuzility
function:

(28) f(a,..., o) ! [$n=1" 2GS

diminish to no gains at all dsbecomes veriarge. Suppose that =0.95 and takes on the same values
as in the previous footnote. Then Index 3 will equal 168.9, 1.670, 1.108, 1.053, 1.026, 1.013, 1.0057 and
1.00052 respectively. Thus the losses are gigantiésiftlose to 1 and negligible (fis very large.
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where the parameteps are positive and sum to 1 and s is a parameter which satisfies the
inequalities 0 < 901. Thus f(q) is a mean of order s.

Assume that all productse available ira period and purchasers face the pasiprices
p! (py,...,m) >> On. The first order necessary (and sufficient) conditigprsvided that s
%1) that can baused to solve the unit cost mmization problem defined by YZre the
following conditions:

(29) ;= 124051 ; n=1,..N:
(30)1 = [Bn=1" 2ngn*S.

Multiply both sides of equation n in (29) by and sun the resulting N equations. This
leads to theequation$n=1" pnoh = 1$n=1" 2n0n°. Solve this equation fot and use this
solution to eliminate th#& in equations (29). The resulting equations (where ezuatis
multiplied by @) are the following ones:

(31) pg/$i=1N pigi = 2n0nYBi=1N 2iG:5; n=1,.,N.

The equationg29) and (30)kan be used to obtain an explicit solution fgr.qon and1
as functions of the price vector’pUse thesesolution functions to form the unit cost
function, c(p) equal t&n=1N pagn(p). This function turns out to be the following oiie:

(32 c(p) = [Bn=1 2,29 pSIE ) s

It can be seen tha(p) is proportional to a mean of order r where r ='&)(sThus if f(q)
is the CES utility function defined by (28), then the corresponditasticity of
substitution i = 1" r=1" [s/(s'1)] =" 1/(s'1) = 1/(1's). Note that our assumption
that s atisfies 0 < 61 implies tha{ satisfiesl <( %t+.

If purchasers maximize the CES utility function defined (B8) when theyface the
positive price vector p, the utility maximizing q will satisfy the share equations (31). If
we evaluateequations (B8) using the period t price and quantity data, we obtain the
following system of estimating equations, assuming that all products are available in all
periods:

(33 s'! prign$i=1N pitgit = 2n(gn")¥Bi=1N 2i(Gh)S; t=1,..,T;n=1,.,N.

It can be seen that thgint hand sides of equations §38e homogeneous of degree 0 in
the parameter2i,...2n SO a normalization of these parameters is required for the
identification of the parameters. The normalizatgm" 2, = 1 can be replaced by an
equivalent normalization such 2¢ = 1.

22Under these conditions, the first order necessary conditions (29) and (30) for solving the unit cost
minimization problem are also sufficient conditions.

23 Explicit solutions for the «fp) can be obtained by using ShephardOs Lemmay(p.=, c(p)/, p- for n
=1,...,N where c(p) is defined by (32).
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We now consider the case where not all productsaaeglable in all periods. The
parameters is assumed to be greater thar(add less than or equal tosb that the
resulting CES utilityfunction is concavke If product n is not available in period t, we can

set g¢' = 0 and ()® = (0 = 0 and thus product n will droput of the utility function.

Thus if we simply set quantities equal to O when the corresponding products are not
available in a period, the overall CES utility function evaluatedhatperiod t quantity

data (with the appropriate 0 values inserted)),f(gill be equal tgd$n. i 2n (0n)5Y, the

utility function f which is defined over just the products that areallytavailable during
period t; i.e., the following equations will be satisfied where we defiaé as theperiod

t aggregate CES utility or quantity (or volume)level:

(34) uces = () ! [$n=1""2n (A1) = [$n. 19 2n (A1) t=1,..T
where the last equality follows under the assumption that s > 0.

Once the aggregate utility or quantity levats<d have been defined by equations (34
the correspondingES fixed base quantity index can be defined aslfows:?*

(35) Qed ! uced/ucest; t=1,..,T
()i ;
=[ 0 2@ i 2@
= [ Index 1]/ [Index 2]/ [Index 3]

where the abovimdexes are defined as follows:

(36) Index I! [' i. ioi) 21 (@)Y [' i o 2i (GiY)S]YS;
BN Index 2! [' i1 2@/ i o 2 (@)Y
(38) Index 3! [' i, iwoim 20 (@DIY/ [ i, 1wy 2i (g)S)¥s.

Note that Index 1 defines a CES quantityndex over the set of commodities trae
available in both periods t and Renote the CES utility functiori” fthat has the sant
parameters as in definition (28) but is now defined over only products that are available
in periods 1 and t:

B F@! [ i iwoiw 2i(a)TYs; t=1,2,..T.

Utility maximizing behavior on the part of purchasers will imply that the following
counterparto equations (17) will hold:

(40) s ! pi'gi/$n. 110)012) Pnlgnt t=1,..T;i. 1(1)0I(t)
=2i ()Y n1w)012) 2n(Gn)®
= 2i (gY)¥f"(qY)®

24In the algebra which follows, the period 1 quantity vector can be replaced by the quantity vector of any
period.
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where the third equality follows using definit®(39.

Note that Index 1is equal tof"(q)/f"(g') and themodified SateVartia formula (7)
(restricted to commodities n thate present in periods 1 and t and where quantities and
prices are interchanged the formuld can be used to calculate this index using the
observed price and quantity data for the products that are avaidigéh periods 1 and t.

As usual, weassume that there is at least one product that is present in periods 1 and t for
each t. Let product i be any one of these common products for a given t. Thén the
share equation in (33) and {4f@r period t canbe rearranged to give us the following

two equations:

(4D 2(a)°=1" n 1 2n(an)T PG n. 1y Pr'On] ;
(42 2(g)° =" n 101 2n ()T p'aY[" n. @01ty Pa'oh]-

Equating (41) to (42leads to the following equations:

43" n 1 20 (@) n o 20 (G) S=" n i) PO n. 1ot PO’
=1t

where the last equality follows usingfahition (18). Now take the 1/s root of both sides
of (43 and use defiition (37) in order to obtain the following equality:

(44) Index 2 = [19Y5=T" i iy p'ai¥" 1. o1y PGS

Again assume that product i is available in periods 1 andarrBnge the share equations
(33) and (4dfor t = 1 and productand we obtain the following two equations:

(45) 2i(agh)*=1[" n. 1) 2n(an")T Pra/[" n 1@y Prtan’] ;
(46) 2N =" n. 101 2n (A1) PG n. (@00 1) Pr’anl].

Equating (45) to (46leads to the following equations:

47" n woie 2n (in)sll n I(1) 2n (in)S: EERTENIT plenl/I n. I(t) plenl
= ut

where the last equality follows usingfahition (19). Now take the 1/s root of both sides
of (47) and use definition (38 order to obtain the following equali§:

25 |f new products become available in period t that were not availableriodpl, therl! > 1. Recall that

the elasticity of substitution in terms of s is equa( tb 1/(1"s) where s satisfies 0 <%1. Thus as s
increases( also increases. Withi > 1, the limit of ()“*as s approaches 0 is -and the limit of ()" as

s approaches 1 i > 1. Thus Index 2is a decreasing function of s for 0 4. Suppose thét =1.05 and

s = 0.005, 0.01, 0.1, 0.3, 0.5, 0.9, 0.99 and 0.999. Therl/(1's) is equal to 2, 10, 100 and 1000. The
corresponding Index’d/alues are 1292.6, 131.5, 1.629, 1.177, 1.103, 1.056, 1.051 and 1.050. Thus the
value of Index 2is very large whef is close to 1 and its value declinestas( approaches plus infinity.
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(48) Index 3 = [W]¥S=T[" n. 101) PriOn" n. 1)) Prignt]*S.

If sis known @ has been estimated, then Indéxgd Index 3can readily be calculated
as simple ratios of sums of observable expenditiased to the powérs. Note that

[' i1 p'O¥" i 1o pitaif] # 1. If period t has products that were not available in period
1, then the strict inequality will hold and since $/0, it can be seen thatdex 2 will be
greaterthan unity.Similady, [' i @iy ptal/ i i) pitgl] %1. If period 1 has products
that are not available in period t, then the strict inequality will hold and seedl/it

can be sen that Index 3 will be leslsan unity.

The interpretations of Index 2nd Irdex 3 are not as simple as were the interpretations

for Index 2 and Index 3hese indexes reflect the effects of changes in the availability of
products but they also reflect increases and decreases in utility that are due to changes in
total expenditure that vary across periods. section 6 below, we will explain how the
methodology developed in this section can be modified to provide valid counterparts to
FeenstraOs unit cost function methodology that was explained in section 2 above.
However, what igrue is that the utility ratio decomposition that is defined by (35) above
can be implemented using observable prices and quantities provided an estimate for s or
( is available. In this respect, the utility function decomposition (35) is similar to
FeengraOs unit cost function decomposition defined earlier by (12).

Note that the purchasersO system of utility maximizing nonzero share equations for each
period that is defined by equations (33) can be rewritten as the following system of
equationsy’

(49)s' = 2i (@YY n. 1) 20 (OnD)3; t=1,..,T;i. I(b).

Recall that the purchasersO systermostf minimizing share equations using the CES unit

cost function defined by (2) was givep bquations (1); S' = & (p)7" n. 1)) & ()" for t

=1,..,T and.il(t). Equations (11) and (49) have exactly the same dependent variables
but they have totally different independent variables: period t prices for equations (11)
and period t quantés for equatios (49). In Section5 and 6below, we will use some
scanner data and estimate both systems of equations and see which system fits the data
best.In the following €ction, we will explain our data set.

4. Scanner Data for Sales of Frozeduice

26 |f some products that were available in period 1 become unavailabéiad jp, then pt < 1. Index 3
evaluated at period 1 prices equal$sE (U)Y™ O and is an increasing function pffor 1 <( < ++. With

gt < 1, the limit of ()Y@ O as( approaches 1 is 0 and the limit pf)/®' O as( approaches+is ' < 1.
Suppose that! = 0.95 and| equals 1.005, 1.010, 1.111, 1.429, 2, 10, 100 and 1000.. Then fnaék 3
equal 0.000035, 0.0059, 0.5987, 0.8428, 0.9025, 0.9446, 0.9495 and 0.9500.

27 Because of the separability properties of the CES utility functi@assumption of utility maximizing
behavior on the part of CES purchasers will imply that the share equations (40) and (49) will hold
simultaneously.
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We will use the data from Store Numbé# & the DominickOs Finer Foods Chain of 100
stores in the Greater Chicago area on 19 varieties of frozen orange juice for 3 years in the
period 19891994 in order to test out the CES models explained in tbeiqus two
sections; see the University of Chicago (2013) for the micro data.

The micro dataare weekly quantities sold of each product and the corresponding unit
value price. However, our focus is on calculating a monthly index and so the weekly
price and quantity data need to be aggregated into monthly data. Since months contain
varying amounts of days, we are immediately confronted with the problem of converting
the weekly data into monthly data. We decided to side step the problems associated with
this conversion by agggating the weekly data intaseudo-months that consist of 4
consecutive weeks.

In the Appendix, the OmonthlyO data for quantities sold and the corresponding unit value
prices for the 19 products are listed in Tables A1 and A2r& were no sales of Products

2 and 4 for Omonths@8 land there were no sales of Product 12 in OmonthO 10 and in
OmonthsO Z2. Thus there is a new and disappearing product problem for 20
observations in this data set. Later in this paper, we will ienplicksian reservation
prices forthese missing products and these estimated paieedisted in Table A2 in

italics. The corresponding imputed quantity for a missing observation is set equal to 0.

Expenditureor salesshares,is! pi'gi/$n-1*° pign!, were computed fgoroducts i = 1,...,19

and OmonthsO t = 1,...239Ve computed the sample average expenditure shares for each
product. The best selling products were products 1, 5, 11, 13, 14, 15, 16, 18 and 109.
These products had a sample average shhieh exceeded 4% or a sample maximum
share that exceeded 10%. These shares are listed in Table A3 in the Appendix. The
remaining 10 products are the lesser selling products and these sharesdaire Tiatde

A4 in the Appendix. See Charts 1 and 2 belonplots of these shares.

*8This store is located in a NorEast suburb of Chicago.
291n what follows, we will describe our 4 we®monthsO as months.
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It can be seen that there is tremendous volatility in the sales shares, both for the best
selling and least popular products. In Charts 3 and 4 below, we platidtige prices for

the best selling and least popular products. The relative price for product i in period t is
defined as p'! p'/ptfori=1,.,19andt=1,...,39.

30 For convenience, the imputed reservation prices for products 2, 4 and 12 were used in Chart 4.
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It can be seethat there is also tremendous volatility in product prices for both the best
selling and least popular products.

Finally, in Charts 4 and 5 below, we plot the relative quantities for the best selling and
least popular products. The relative quantitygorduct i in period t is defined asi'd
gY/qgfori=1,..,19andt=1,...,39.

31 However, ¢ =0 and ¢ = 0 for t =1,...,8. Thus we define#jas q'/q° and g4 as gq/q.° fort=1,...,8.
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It can be seen that the volatility of quantities (relative to month 1) greatly exceeds the
volatility of prices (relative to month 1). When a product goes on sale at say ! of its
normal price, the volume sold of the product can easily increase 10 fold or more.

In the following section, we will use this data set in order to implement FeenstraOs unit
cost funtion methodology for the treatment of new and disappearing products.
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5. The Estimation of CES Preferences Using the Unit Cost Function Approach

We assume that purchaser preferences are defined by the utility function that is dual to
the CES unit cost fiction defined by (2) in Section 2 above. Recall that the system of
estimating equations (5) was obtained for this métll.this section, we compare two
methods for estimating the elasticity of substitution for this model: the first method uses
the nonlnear equations in (5), and the second method is a simplified version of the
estimator proposed by Feenstra (1994).

Using the first methodye have a nonlinear system of 19 estimating equations where the
ith equation for period is s' = & (pY)7/' n=1" &(pn)" for i = 1,E,19 and t = 1,...,39We

add error terms3!, to these equations whe@!(..., 319" is assumed to be distributed as a
multivariate normal random variable with mean vectes &d varianceovariance
matrix $ for t = 1,...,39.In order to identify the&;, we impose the following
normalization:

(50) &19=1.

Since the shares' sum to one for each period t, all 19 error tehgor i = 1,...,19
cannot be distributed independently sodvepped the equation for product t6m our
list of estimating equation's.

We chose to estimate the key parameter r in two stages. In the first stage, we setr =1, so
that we obtaiadthe following system of nonlinear estimating equations:

(51)s' = [&piY" n=1N &pnl] + 3! ; t=1,..,39:i=1,...,18.

We used the nonlinear regression software package in SHapagstimate the unknown

& in equations (51)The final log likelihood turned out to be 2034.884. The equation by
equation R valueswere as follows$®0.6138 0.1277 0.5476 0.4875 0.2376 0.1191
0.5014 0.0172 0.0761 0.047 0.0016 0.4232 0.6578 0.0012 0.5826 0.2973 0.1481
and0.2323 Thus the fits for this preliminary regression were not very dngdhis is to

be expeted: Model 1 defined by equations (51) corresponds to preferences that exhibit
no substitution between products, which is implausibleclosely related products

32 The actual estimatinequations are defined by equations (27), which take into account the prices and
guantities which are missing due to product unavailability. We will explain how we dealt with the problem

of unavailable commodities in subsequent footnotes.

33 There is a prialem with this stochastic specification: for 20 observations, the price of a product that is not
available is taken to be++in the nonlinear regression model that corresponds to equations (5). If r < O,
then (+)" = 0 and the corresponding quantity angbenditure share will also be 0 so in our regression
model, there will be 20 observations (out of a total of 702) that will automatically have 0 error terms. In
order to apply standard nonlinear regression software for systems of equations, we haveiliemporar
ignored this problem.

34 See White (2004). For the 20 observations where prices and quantities were not available, we set the
corresponding prices, quantities and shares equal to 0 in the system of estimating defined by equations (51).
35 The R concep that we used is the square of the correlation coefficient between the dependent variables
and the corresponding predicted variables.
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The estimated, coefficients generated by the above special case of CES preferences
wereused as starting coefficient values (along with r = 1 as a starting valthe) umit
cost CES model defined by the normalization (50) and equations (52):

(52)s'=[& (p) /' n=1" &n (p))] + 3; t=.139:i=1,...,18.

Again, Shazam was used to estimate the 19 unknown parameters in equatiéhsh&2).
final log likelihood for this Model 2 was 2195.039, an increase b80.1550ver the
previousModel 1regression for adding one parameter. Thenaede for r was'2.8041
with a standard error equal @12939 Hence the resulting point estimate for the
elasticity of substitution i¢ ! 1" r = 38041 Thus there is a considerable amount of
substitution between the 19 frozen juice produtte equdon by equation Rvalues
were as follows0.6357, 0.7179, 0.6407, 0.8221, 0.3619, 0.0051, 0.6652, 0.02632,
0.0206, 0.0109, 0.4286,0.7410,0781, 0.8050, 0.3370, 0.1589 ab@673 These R
valuesare considerably higher than the correspondings dnem the first regression
model However, the average’®as only equal to 0.3767 which is not very satisfactory.

While the estimate of = 3.8041for the elasticity of substitution seems like a reasonable
amount of substitution, it is considerably lewthan the estimate that we shall obtain in
the next section from the utility function approach. Rather than proceed with this initial
estimate, we now present an alternative method for estimating the elasticity that is a
simplified version of the estimat in Feenstra (1994). A key feature of this estimator is
that it takes into account measurement error in the prices, which can arise because we are
aggregating the prices over time, i.e. over weeks in our initial data, and over months in
the dataset thate use to construct all of our price indexes. So the prices in the data are
actually unit values of each productlefined over these time intervals. We will find that

the alternative estimator of Feenstra (1994), which controls for this measurement error,
provides an estimate @fthat is much higher than&41

We begin by noting that the priceg fhat are listed in Appendix A are not the true,
minuteby-minute selling prices in the store. The pricésape aggregates over time D
weekly or monthly. Weefer to these aggregates over timesasvalues, and we assume
that they are related to thewe prices 4i by:

(53 Inpt=In4it+ ut,

3¢ Recall that we have 20 observed pricéshat are entered as zeros. But {®)not well defined if r < 0.

Thus for t= 1,...,8, the 0 price termsA{p and (R")" on the right hand side of equations (52) were replaced
by 5(p2!)" and5!(p4")" where we set= pit = 1 for t = 1,...,8 and whefg is a dummy variable which takes

on the value 0 for t = 1,...,8 and isuatjto 1 for t = 9,10,...,39. Similarly, the 0 price terms'ffor t = 10

and t = 20, 21 and 22 were replacedsh¥(1) where5:2' is a dummy variable which takes on the value 0

for t = 10, 20, 21 22 and is equal to 1 for other periods t. Thus wiesgdrices for the 20 missing
observations equal to 1 but we nullified terms involving these prices using our dummy variables. With
these modifications, the Shazam system nonlinear regression package worked well. The starting log
likelihood for the nonliear regression model defined by this modification of (52) was equal to the final log
likelihood for the model defined by (51) which is a check that our modified model behaved in the desired
manner.
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where 4 is the measurement error in the log unit values. We assume that the
measurement error in the logitmalues,In p, is uncorrelated with the logarithms of the
true prices, l4.

Next, consider the share equations (27) but replace the unit value pricgshe true
prices4i'. Take the natural logarithms of these equations and add error terntaitotbé
following equations:

(54) Inst=In& +rin4'BIN[$n. 1y &(4n)] + 3! ; t=1,.,T;i I(t).

The error ternB! can arise due to movements in the share variable that does not reflect
CES behavior othe part of the representative consumer. A good plafor our frozen

juice data" or other scanner datawould be sales that lead to shopping for inventories,
which is behavior that lies outside our mo#lel.

We will make the usual assumption that #mors in the share equatisn(54) are
uncorrelated with the prices in (53), i.e. these OtrueO prices are exogenous to the
consumer® Furthermore, we shall assume that the measuremens afran the unit

values is uncorrelated with the err@'sin the share variabke This latter assumption is
motivated by the fact thdtarcode data typically includes some rather extreme values for
the (daily, weekly or monthly) unit values. While the most extreme values can be filtered
out, there is inevitably somemaining measurement error that does not appear to be
reflected in the sales data, i.e. it is true measurement error.

The challenge now is to obtain a consistent estimate for the elasticity of substitution in
the presence of (independent) errors ithiibe share and the unit value data. Feenstra
(1994) argues that themel nature of the datas€over products and timP provides a
method to obtain such a consistent estimate. To showthieisshare equation in (b#
simplified by taking firstdifferences over tim& eliminate the nuisangearameters;,

and then by taking an additiondifference with respect to a reference product k to
eliminate the summation terth

(55) 6Ins'B6Inst =r(6In4itD6In4!) + 63! D63 ,
= r(6lnptD6Inpt) Br(6utB6u) + 63t D63, t=2,...,T,i. I(t)0 I(t-1), i"k,

37 Feenstra and Shapiro (2003) analyze inventory silibehavior for canned tuna.

38 The estimator in Feenstra (1994) allows for upward sloping supply curves, so that prices become
endogenous, but we ignore that feature of the estimator here.

3% We assume that the reference product k is available in peeigd, and in practice, we choose it as the
product with highest cumulative sales that is available in every period. In our data set, this is product 13.
Our estimation method is somewhat sensitive to the choice of the reference product. The idaekrefere
product has a large share in every period and a small period to period variance in the shares.
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where the second line of (55) ibtained by substituting from ($»3or the unit values.
This double differencing focuses attention on the only parameter that is needed to
compute the Feenstra price index, namely, the elasticitybstiution( ! 1" r.

To proceed further, it is convenient to define second and-orosgents of the errors and

data. These will be used to express our assumptions about terms being uncorrelated, and
they will be used in the estimation. For any two Jalga x and y, define their cress
moment in the data (differenced over time and differenced with respect to product k) as:

(56) Mi(x,y)! (1/T) [$t. 1) (BX'D6XH)(BYitD6YKY)] | i=1,...N, ik,

where the variableBx' and6y;' are both available in theeriods t T(i), and the number

of such periods is denoted by For example, if the products x and y are availabl€/in
periods, thenT(i)={2,E,T} and T,=THL, to allow for the first diffeencing. These
products might be available in fewer periods, however. If x = y thercross moment
defined in (5% becomes a second moment of the variable x. For whatever choice of the
variables x and y that we make, the moments are constiugtaeeragng over time as in

(56) for each of the products i=1,E,N, 'k, so that because of the panel nature of the
dataset, we have a cressction of such moments.

With this definition, our assumptions that certain terms are uncorrelated can be expressed
conveniently as,

(57) E[M(3In4)]=0, E[Mi(u,In4)]=0 and E[M(3,u)]=0, i=1,..N, ik,

where E denotes the expected value. The first of these assumptions is that prices are
exogenous to the consumer; the second is that the measurement error in the unit values is
uncorrelated with therde prices, and the third is that the errors in the shares and in the
unit values are uncorrelated. We now show how these moment conditions can be
combined to obtain a consistent estimate of the elasticity of substitution, in what Feenstra
(1994) refers t@s a generalized method of moment (GMM) estimator.

The crosamoment between the errors in shares and in unit values can be written as:

(58) M(3u)! (1/Ti) [$t. 74) (63'D6X) (Bu' D6 L]
= (UT){$t. 7 (63' BD6IY)[(6Inp'D6InpK!) B(6In4it B6IN4h)]}
={(1/Ti) $¢. 13)[6In s' D6In s Br(6InpitD6INpLt) + r@G U D6 UKY)]
I (6Inp'B6Inp)} BDM;(3,In4)
= Mi(Ins,Inp) BrMi(Inp,Inp)+ rM;(u,lnp) BM;(3,In4)
= Mi(Ins,Inp) BrMi(Inp,Inp) + rMi(u,Iind) + rM;i(u,u) DM;(3,In4),

where the second line uses (54) to express the measuremen6afd6ly); the third
follows by combining the tern6(n4'B61n4y") with the shareerror 63! B63) to obtain
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Mi(3,In4), and then rexpressing that error in full using (55); theifth line follows from
definition of the various crosmoments; and the last line follows becausgéuNhp) =
Mi(u,Ind) + Mi(u,u), from (53. It is convenient to rewrite (58) as,

(59) M(Inp,Inp) = (1/r)M(Ins,Inp) + Mi(u,u) + Error, for i=1,E,N, i "k,
where Erroris defined as follows:
(60) Error! Mi(u,In p)B(1/r)[Mi(3In p)+M;(3,u)].

What we have obtained in (59) is a simple linear regression involving moments of the
data, which can be run over the products i=1,E,N, i"k. The errorthis regression,
defined in (60), consists of a sum of the moment conditions that we have discussed in
(57). By running OLS on the regression (59) we will be making the sum over products of
these squared errors as small as possible, which is the gbal®@MM estimator.

Examining this regression more closely, the dependent variable is the second moment of
the log unit values (differenced with respect to time and with respect to product k). The
first term on the right is the cross moment of the maskates and unit values, and the
coefficient of this term is (1/r). The second term on the right is the sample variance of the
measurement error in the unit values for the products. That variance is not observed in the
data, but we assume that this (popualat variance igonstant across the products, so that

this second term is replaced byaustant term in the regression. As already mentioned,

the remaining terms are errors that are minimized by running OLS. Feenstra (1994)
discusses how more efficiergtenates can be obtained by runningghted least squares,

and how the correct standard error of (1/r) can be obtained from a slightly different
version of (59)°

Running he OLS regression for the frozguice data result iff ! 1" r = 7.9891 for
weekl data, and = 5.9900 from monthly data. Thus, we see that aggregating over time
from weeks to months does result in a lower estimate of the elasticity of substitution. But
the estimate of 5.9900 from the monthly data is still considerably higher thestitinate

of ( = 3.8041that was obtained from the direct estimation of (%2)described above.
When computing the Feensttadexes 2 and 3we use the estimate ¢f = 5.9900
obtained from monthly data, for consistency with the monthly data used iesétaates.

40 gpecifically, instead of constructing the second moments of the data initially, the regression can be run
over alli'k, and t. T(i) by using 6Inp'D 6Inp")? as the dependent variable, which is regressed on a
constant term and or6lpp' B 6lnpd!) (6Ins' B 6Insd). Instrumental variables (IV) which are indicator
variables for each product are used to estimate thisgsign. In the first stage we regre8m ' D6In p«)
(6Ins'D6Insd) on these 1V, over all'k, and t. T(i), and the predicted values from these regression equal
the averages M s,Inp) repeatediTimes for each product i"k. Thus, this IV regriessis equivalent to a

WLS version of (59), wherei Ts used as the weight for each product. This IV regression gives the estimate
(standard error) fof of 5.9845 (0.847), which is nearly equal to the unweighted estimate of 5.9900
obtained from running O& on (59). Feenstra (1994) further discusses how more efficient estimgtes of
can be obtained from another weighted regression.
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We cannot use the results of the Feenstra method of moments estimétar toder to
directly compute the CES monthly price levels because we need estimates for the
nuisance parameters (the estimatad in order to do this. However, wercaefinethe

CES price level for month t,Bd", as follows using ouearlier Model 2 estimated
coefficients:

(61) Pced™ ! [' n i) & (p)) 7Y ; t=1,...,39.

Note that the pces of products that were not available in period t do not appear in the
terms on the right hand sidbf equation t in equations (6IThe normalized CES price
index for month t is defined ag® ! Pced'/Pcest” for t = 1,...,39.This econometrically
based price index for frozen juice is listed in Table 1 below along with a number of
OtraditionalO price indexes.

Table 1: CESand FeenstraPrice Indexes and Satévartia, Fisher, Laspeyres,
Paasche Fixed Base and Chained Maximum Overlap Price Indexes

Pces  Preen' Ps' Pe' Pech' P! Pich' Pp! Ppch'
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.00508 0.99711 0.99711 1.00218 1.00218 1.08991 1.08991 0.92151 0.92151
0.99521 1.00504 1.00504 1.02342 1.01124 1.06187 1.12136 0.98637 0.91193
0.94121 0.93679 0.93679 0.93388 0.94265 1.00174 1.06797 0.87061 0.83202
0.91406 0.93730 0.93730 0.93964 0.93715 0.98198 1.11998 0.89913 0.78417
1.00557 1.04223 1.04223 1.03989 1.04075 1.13639 1.27665 0.95159 0.84844
1.08119 1.085G 1.08505 1.05662 1.10208 1.22555 1.42086 0.91097 0.85481
1.15826 1.25882 1.25882 1.15739 1.26987 1.17446 1.75897 1.14057 0.91676
1.12605 1.22598 1.23745 1.15209 1.24778 1.17750 1.73986 1.12722 0.89487
1.13885 1.22532 1.23111 1.14617 1.24137 1.21100 1.78937 1.08481 0.86120
1.11631 1.19653 1.20887 1.14088 1.22950 1.19184 1.85291 1.09210 0.81584
1.09576 1.18382 1.19602 1.12760 1.22009 1.21172 2.00384 1.04932 0.74288
1.07865 1.17805 1.19020 1.10698 1.20731 1.15736 2.16323 1.05880 0.67380
1.09705 1.20718 1.21962 1.13419 1.23863 1.19572 2.29212 1.07582 0.66934
1.02962 1.13129 1.14295 1.05579 1.15978 1.12363 2.30484 0.99205 0.58359
1.01928 1.12715 1.13877 1.05099 1.15371 1.09373 2.32686 1.00993 0.57204
0.95211 1.05805 1.06896 0.98640 1.08568 1.07191 2.27306 0.90771 0.51855
0.86187 0.95922 0.96911 0.89490 0.98385 0.96788 2.12683 0.82742 0.45512
0.86582 0.96690 0.97687 0.89032 0.99122 0.97566 2.19851 0.81244 0.44690
0.86905 0.96291 0.96805 0.89016 0.99104 1.04652 2.3318 0.75716 0.41649
0.87341 0.97380 0.97900 0.89453 1.00061 1.01001 2.46345 0.79225 0.40643
0.84816 0.93449 0.93948 0.85466 0.95983 0.96827 2.42222 0.75438 0.38034
0.85830 0.94742 0.95627 0.88842 0.97730 0.94697 2.52523 0.83349 0.37823
0.87495 0.93760 0.94636 0.88930 0.96178 0.95666 2.59808 0.82668 0.35604
0.77932 0.85935 0.86738 0.80421 0.88017 0.83788 2.52526 0.77189 0.30678
0.81396 0.89729 0.90567 0.84644 0.91938 0.92401 2.82064 0.77539 0.29967
0.87388 0.95499 0.96391 0.88641 0.98171 0.92853 3.20399 0.84620 0.30080
0.79552 0.87825 0.88645 0.81528 0.90580 0.90110 3.25314 0.73763 0.25221
0.83771 0.92684 0.93550 0.85705 0.95671 0.91523 3.55936 0.80258 0.25715
0.83003 0.91453 0.92307 0.84508 0.94446 0.92571 3.60564 0.77147 0.24739
0.85502 0.93991 0.94869 0.87333 0.97386 0.94494 3.80130 0.80715 0.24949
0.90137 0.99276 1.00204 0.89973 1.00016 1.04403 4.32811 0.77538 0.23112
0.89378 1.00742 1.01683 0.92673 1.02452 1.01783 5.40982 0.84377 0.19402
0.93133 1.03B71 1.04336 0.95385 1.05227 0.99801 5.91196 0.91165 0.18729
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35 0.98200 1.08487 1.09500 0.98690 1.10820 1.05351 6.39424 0.92451 0.19206
36 0.94110 1.06466 1.07461 0.96237 1.08529 1.00318 6.63992 0.92322 0.17739
37 1.03787 1.17261 1.18356 1.04948 1.18995 1.09380 7.44751 1.00696 0.19013
38 1.07081 1.19584 1.20701 1.09545 1.21560 1.16242 7.84172 1.03234 0.18844
39 0.91069 1.03639 1.04607 0.94999 1.05918 1.02873 7.11030 0.87729 0.15778

The dained Saté/artia index is listed asd# in Table 1.Each chairink is defined over
the set of products that are available in both periods t"dnd’lhe logarithm of the chain
link going from period'tl to period t is defined as follows:

(62) InPLsv'! $n. it 1)010) Wit In(pnt/pnt™Y) ; t=23,...,T.

The weights W that appear in equations (6&re calculated in twstages. The first stage
weight for product n in period is defined as W ! (s'" s'Y/(Ins'" Insy) for
n. I(t"1)0I(t) and t = 2...,T provided that$) s''L If st = &', then define W' ! st =
si''L. The second stage weights are defined As wi'/$i. i 1010 Wit for n. 1(t" 1)0 I(t)
and t = 2...,T. These chain link®.s\' are cumulated into the chained S¥fartia price
indexPsy! ! Psy"'Y/ Pusyt for t = 2,3,...,3%hat is listed in Table 1. Thisdex ends up at
the level 1.04607%n month 39 which is well above the correspondeog@nometrically
determinedPces® level equal td.91069

The SateVartia indexes, &, are equal to FeenstraOs Index 1 in his decomposition of the
CES price index using index numbers. We can also compute his Index hdex 3
terms once we use his preferrestimator for the parameter, r' = "4.990Q which we

now have.Using this estimated’, his Index 2 and Index 3 for month t in the present
context when we are computing chained indexes are defined as follows:

(63) Index!! [' i. 1oy pitg" i. it o1y PG ;
(64) Indexg' ! [' n o Pt 2ot Y n 1) pot Lt

The above indexes will be equal to 1 if the available products remain the same going
from period t1 to period t. There are 5 periods where the number of available products
changes from the previous period: months 9, 10, 11, 20 and 23.'Inileke less than

unity for months 9 (products 2 and 4 become available), 11 (product 12 becomes
available), and 23 (product 12 again becomes available).swdéxpe greater than unity

for months 10 (product 12 becomes unavailable) and 20 (product 12 again $ecome
unavailable).Usingr" = "4.9900and the data tabled in the pgndix, we can calculate
Index' and Index for these 5 months. The results are listed in Table 2.

Table 2: Indexes Measuring the Effects of Changes the Price Level due tathe
Availabil ity of Products when( = 5.9900

Montht Indexst Indexst
9 0.99073 1.00000
10 1.00000 1.00460
11 0.99448 1.00000
20 1.00000 1.00495
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23 0.99603 1.00000

In month 9, products 2 and 4 make their appearance and Table 2 tells us that the effect on
the CES price level of this increase in variety is to lower the price level for month 9 by
about0.93 percentage pointth month 10 when product 12 disappears from the store,
this disappearance has the effect of increasing the piel for frozen juice by 86
percentage points. The overall effect on the price level of the changes watlabikty

of products is equal to 0.9907B0046@ 0.99448 1.0049% 0.99603 = 0.99075 a
decrease in the price level othe sample period of about 0.93 percentage paolhis is
anoticeablereduction in the price level.

The indexes listed in Table 2 are chain links. For the 5 months when one of the two
indexes is not equal to 1, these links can be multiplied with the correspondirgeBtado

chain link in order to obtaithe overall Feenstra chain link index. The Feenstra chain
links can be cumulated and the resulting indexes arerthe Ehat are listed in Table 1
above. Note thatden®® ends up at 1.0363&hich is lower than the corresponding Sato
Vartia index, Rv*® = 1.04607 Recall that the cumulative effects of changes in the
availability of products was 0.9907%his factor times &% is equal to Been®®.

With very small errors in the estimating equatidhg Feenstra index for month teR\,

should equathe econometrically based CES indexgd? But it can be seen that in
general, the Feenstra indexes are well above the corresponding CES ththowsver,
exactequality between the two indexes will hold only if all purchasers have common
CES preference and minimize the cost of their purchases in each month. If these
assumptions were satisfied, all of the errors in the econometric model that we estimated
would be 0 but of course, this is far from being the case. In fact, the CES unit cost
function modeldoes not fit the data very well and sa&&} is not equal to &¢<.

It is of some interest to compareee and Reen to traditional fixed base and chained
Laspeyres, Paasche and Fisher price indexes. It should be noted that these indexes cannot
takeinto account the effects of changes in the availability of products. The chain links for
these indexes are calculated for each period t using the usual formulae but restricting the
scope of the index to products that are available in perfddsnd t. Tlesemaximum

overlap chain links are then cumulated into the Chained Laspeyres, Paasche and Fisher
indexes Per!, Pect and Rci that are listed in Table 1 above.

Calculating traditional fixed base indexes is a tricky business when the base period does
not include all products, which is the case with our data. Thus for months 1 to 9, we
calculated fixed base Laspeyres, Paasche and Fisher indexes, excluding products 2 and 4,
which were not available in months 1 to 8. In month 9, all products were avalfatiie
subsequent months, all products were available except for months 10 && 20
Excluding these 4 months (and months 1 to 9), we calculated fixed base Laspeyres,
Paasche and Fisher indexes relative to month 9 and then linked the resulting iatlexes (
month 9) to their fixed base counterparts that were constructed for months 1 to 9. We are
missing indexes for months 9 and-2®. For month 10, we used the Laspeyres, Paasche

41 This indicates that the maximum overlap Sato Vartia indexes suffer from an upward chain drift problem.
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and Fisher indexes going from month 9 to 10, excluding product 12 (whickssmfor

month 10) and used these links to our earlier index levels established for month 9. For
months 2622, we calculated fixed base Laspeyres, Paasche and Fisher indexes over the 4
months 1922 excluding product 1and then linked these indexes for mtits 2022 to

their earlier counterpart index levels for month 19. The resulting sequence of indéxes, P
Pst and R are listed in Table 1 above.

Looking at Table 1, it can be seen that the chained Laspeyres and chained Paasche
indexes are complete disters. Rn' endedup at 7.11030for month 39 {oo high) and

Pecit ended up ab.15778(too low). Their fixed base counterparts! &d B, ended up
at1.02873 and 0.87729his is a fairly substantial gap and indicates that these indexes
are subject teubstitution bias. The chained Fisher indexrRended up at 1.0591&nd

its fixed base counterpart'’ended up a0.94999 Thisindexis somewhat comparable to

Pced which ended up @.9139.4% The seriesri Table 1 are plotted in Chartexcept for

the chained Laspeyres and Paasche indekésh are more or less off theh@rt!

I"#$%&B(&!C)D&E++1,%$#&#14&F#GO<5<&HI+$*#9&3$06+&J

07 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

‘ —Pces — Preen. — Psy Pr Pech P Pr ‘

The fixed base Paasche inde&eson the lowest curve on Chart Pced is slightly below

the fixed base maximum overldfixed base)Fisher ind& P and they are the second

and third curve from the bottom. The highest curvesPaeg, the chained maximum

overlap Fisher indexs\!, the Satevartia maximum overlaphained index followed by

the chained Feenstra indexessRN. It seems very likgl that these indexes suffer from a
fairly substantialupward chain drift. The wide gap between the fixed base maximum
overlap Laspeyres and Paasche indexes indicates that these two indexes suffer from

42 Remember that theixed base Fisher index does not allow for the fact that increased availability of
products over the sample period reduced the final price level by almost 2 percentage points. Thus if we
reduce P*°by 1 percentage point, the maximum overlap fixed baseFistex ends up at approximately

0.94 which is getting closer ta@*® = 0.91.
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substantial substitution bias. The most reasonablexésdere the econometrically
determined CES price indeR¢ed, andthe fixed base maximum overlap Fisher index,

The fact that the chained Fisher index ended up higher than its fixed base counterpart is a
priori surprising; this fact indicategward chain drift when we would expect downward

chain drift. However, Feenstra and Shapiro (2003; 125) also found upward chain drift
using chained TS8rnqvist price indexes on weekly ACNielsmanner datéd It is
somewhat surprising that this upward chain dnétttwas found using weekly unit value

data persists when monthly unit value data are tfsed.

We turn now to the estimation of CES preferences usiagsystem of share equations
that correspond to the maximization of a primal CES utility function.

6. TheEstimation of CES Preferences Using the Utility Function Approach

Recall that the system of estimating equations for purchasers maximizing a CES utility
function turned out to be equations (49). These share equations hold for products that are
present ineach period. In order to use the system command for estimating a system of
nonlinear regression equations in Shazam, weagsdume that these equations hold for

all products®® Recall that we assumed that s satisfied the inequalities @k Jo start

off our estimation procedureie will estimate a preliminary/odel 3 where we assume s

= 1. Thus we obtain the following system of estimating equations:

(65) st= [2| qit/I n=11° ZnQnt] + 3! t=1,.,39i=1,..19

where the error term vector3, are assumed to be distributed as a multivariate normal
random variable with mean vector@nd varianceovariance matri$ for t = 1,...,39
Note that the CES utility function collapses down toredr utility function. Thus all
products are perfect substitutes in this mottebrder to identify the2,, we impose the
following normalization:

(66) 210=1.
Since the shares' sum to one for each period t, all 19 error tehgor i = 1,...,19

cannot be distributed independently so dvepped the equation for product t6m our
list of estimating equatiorfer Model 3

43 For our data set, the maximum overlap chained TSrnqvist indexes were fairly close to our chained Fisher
indexes. The maximum overlap chained T&rnqvist index ended up 1gfbfér than Fer®,

44 Feenstra and Shapiro (2003; 125) suggested the following cure for the chain drift problem: OThe only
theoretically correct index to use in this type of situation is a fixed base index, as demonstrated in section
5.3.0 However, this proged solution does not treat all periods in a symmetric manner and it does not deal
with the problem of entering and exiting products.

4SWhen a product is missing, we will assume that the resulting quantity and share is equal to 0. If s > 0,
this means it equations (65) will hold fort=1,..., 39 and n=1,...,19.

46 This is a slightly incorrect econometric specification si¢evill automatically equal 0 if product n is

not present during month t.
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As usual, v used the nonlinear regression software package in Shazam to estimate the
unknown2; in equations (6p The finallog likelihood turned out to b8074.316 which

is a huge increase from the final log likelihoods for Models 1 and 2; recall that the
dependent ariables are the same in all 3oNkls and thus the log likelihoods are
comparableThe equation by equation’Raluesfor Model 3were as follows0.9676

0.9809 0.9666 0.9779 0.9581 0.9494 0.9724 0.775Q 0.9648 0.9762 0.8291 0.9168

0.9846 0.9292 0.9653 0.9559 0.9065and0.9554 These Rare very much higher than

the correspondingRor Models 1 anc.

The estimate@,” coefficients were as follows: 1.098, 1.101, 1.241, 1.248, 1.247, 1.939,
1.277, 0.825, 0.513, 0.520, 0.784, 1.017, 1.028, 1.416, 0.439, 1.099, 1.699 and 1.094. Of
course219! 1. These cefficients reflecthe marginal utility and hecethe quality of one

unit of each product relative to product 19. Thus they could be regardeauias
adjustment parameters for the first 18 products.

We used the abov&" coefficients as starting values (along with s = 1)indel 4 which
is the bllowing nonlinear regression model:

(67) s' =121 (Y% n 1) 2n(gn))%] + 3t t=1,.,39i=1,...B.

We again make the normalization (6@Jsing the nonlinear systems estimation package
in Shazamwe estimated the above modeThe final log likelihood turned out to be
3239.160Q which is a increaseof 164.844from the finallog likelihoodfor Model 3. The
estimated s was' s 0.85374(standard error = 0.0065) and so the estimated elasticity
subsitution is ( = 1/(1's’) = 6.8371 This is very much larger than the estimatefbr
Model 2. The estimated®,” coefficients were as follows: 1.095, 0.998, 1.136, 1.139,
1.135, 1.530, 1.168.759, 0.555, 0.547, 0.801, 0.892093, 1.287, 0.465, 1.185304

and 1.049 These2," estimates (an@i9 ! 1) are proportional to the marginal rates of
substitution between the 19 products when purchasers with CES preferences purchase
one unit of each produtt. The equation by equation?Raluesfor Model 4 were as
follows: 0.9748 0.9873 0.9716 0.9904 0.9637 0.960Q 0.9766 0.7746 0.9678 0.9792
0.8057 0.9387 0.9863 0.9207 0.9821 0.9527 0.8996and 0.9583.The average Ris
equal to 0.9439These R are quite high considering that the dependent variaies

47The 0 values for some' go not cause problems He parameter s is positive during the iterations for the
nonlinear systems regression. However, temporary negative estimates for s can occur. In order to eliminate
problems with the nonlinear estimation softwaxe, set ¢ = 1 for the 20 observations wieethere were
missing products. Thus for t = 1,...,8, the 0 quantity ters§ &nd (a")" on the right hand side of equations

(58) were replaced by(1)* and5'(1Y)® where5' is a dummy variable which takes on the value 0 for t =
1,...,8 and is equal tbfor t = 9,10,...,39. Similarly, the 0 quantity terms'fgjfor t = 10 and t = 20, 21 and

22 were replaced Hyi2(1)° whereb5it is a dummy variable which takes on the value 0 for t = 10, 20, 21, 22
and is equal to 1 for other periods t.

48| et 2 be the vector of the 12, Evaluate the CES utility function when one unit of each product is
purchased, which give rise to the utility levelhiffiwhere 1sis a vector of ones of dimension 19. Then the
vector2 is proportional to the vector of first ordespal derivatives of the utility functior¥, ¢f(119). Thus

the 2, reflect the relative marginal utilities of the 19 products when one unit of each product is purchased.
The highest quality products appear to be Products 6, 17 and 14 while the lowegtpgodiitts are 15,

10 and 9.
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sharesThus the CES directly estimated utility function model fits the data much better
than the CES unit cost function model.

Note that the dependent variables for the CES cost function model, Model 2, and for the
CES direct utility function modeModel 4, are exactly the same. If the price and quantity
data were exactly consistent with CES preferences for purchasers and utility maximizing
behavior, then the results for Models 2 and 4 should be consistent; i.e., the same estimate
for the elasticityof substitution would be obtained and the fits would be perfect for both
models? Of course, the data are not exactly consistent with purchasers maximization of
a CES utility function so we are faced with the problem of choosing between Models 2
and 4. Fom a purely economic perspective, prices are exogefmagdecting possible

time aggregation errornd purchases (quantities) are endogenous and so perhaps we
should favour estimating Model 2. However, from the perspective of choosing a model
which best dscribes the data, it is clear that estimating Model 4 is preferable. The issue
of model choice is important since as we have seen, the Model 4 estimate of the elasticity
of substitution is much larger than the Model 2 estinaldnough not much largerdh

the ( = 5.9900 estimate that was obtained using the Feenstra econometric specification)
and hence as will be shown below, the gains and losses from changes unt prod
availability will besmaller using thestimated implied by Model £°

Define the CES utility or quantitylevel for month tQced’, as follows using our Model 4
estimated coefficients:

(68) Qced™ ! [' n. 1y 20 (G)¥]YS ; t=1,...,39.

The normalized CES quantiindex for month based on the estimation of a CES utility
functionis defined aced ! Qced’/Qces” for t = 1,...,39. This econometrically bdse
guantityindex for fozen juice is listed in Tablelklow. It ends up at the leval39048 in
month 39.

The chained SatWartia quantity index defined over products that are present in
successive periods listed axQs\! in Table 4 The period t link indexQs\!, is defined
over only the products that are present in periods t'ahdrtie logarithm of thechain
link going from period'tl to period t is defined as follows:

(69) INQLsv!'! $n. 1t o1y Wt In(gn¥/gnt™?) ; t=23,...,T.

49We checked that our software was correct by taking our estimated coefficients for Model 4 and using
them to define a CES direct utility function. We then calculated shadow prices period t imputed equilibrium
prices for producn as g ! 2:(g")?! for n. I(t) and t = 1,...,39. If 8I(t), then p* ! ++. Using these
imputed prices and actual quantities with!q0 for n81(t), we used the Model 2 software with this new

data set and estimated the elasticity of substitutiothferartificial data set. We obtained exactly the same
estimate fo as we obtained for Model 4 and thévias 1 for all 18 estimating equations.

50 From a numerical perspective, it is possible to explain why Model 4 fits the data better than Model 2.
Praduct shares of sales are normalizations of product sales. Sales are equal to price times quantity.
Quantities vary roughly 10 times as much as the variations in prices. Thus sales (and hence shares) of a
product will be more highly correlated to quantittaan to prices and so the Model 4 ¥itif be much

higher than the Model 2 fits.
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The weights W that appear in equations (68re exactly thesame as the weighthat
appeared in equations (62 hese chain link.s\' are cumulated to the chained Sato
Vartia quantityindexQsv' ! Qsv''Y Qusv! for t = 2,3,...,3%hat is listed in Table.4This
index ends up at the leveli4374 in month 39 which is well below the corresponding
CES level, which was 1.3984!

The SateVartia quantityindexesQs\, are equato FeenstraOs Indexit our adaptation
of his decomposition of the CES price indéx the utility function context; see (35)
above We can also computie utility function counterparts twur Index 2 and Index 3
terms once we havan estimator for the parameter s which we now have. Thegtg util
function counterparts tmdex 2 and Index 3for month t in the present context when we
are computing chaineaguantityindexes are defined as follows:

(70) Index™ ! [ i. iy pita¥" i o1 PGS ;
(71 Index™ ! [' n i noiy Pt 2t " iy pat ot S

The above indexes will be equal to 1 if the available predreatnain the same going

from period t1 to period t. There are 5 periods where the number of available products
changes from the previous period: months 9, 10201and 23. IndeX will be greater

than unity for months 9 (products 2 and 4 become avajlabl (product 12 becomes
available), and 23 (product 12 again becomedabla). Index” will be lessthan unity

for months 10 (product 12 becomes unavailable) and 20 (product 12 again becomes
unavalable). Using our estimatesl = 0.85374and the dataabled in the Apendix, we

can calculate Inde% andIindex" for these 5 months.HE results are listed in Table 3

Table 3: Indexes Measuring theeffects of Changes on Utility due tahe Changing
Availability of Products

Montht Indexa™ Indexs”
9 1.0559 1.0000
10 1.0000 0.9735
11 1.0329 1.0000
20 1.0000 0.9716
23 1.0235 1.0000

The overall effect on the utility level of the changes in the availability of prodwets
the sample periods equal to 1.0559.973%1.0329 0.9716 1.0235 = 1.0559an
increase in the utility level over the sample period of about 826%.

51 This difference is due to three factors: (i) the CES index is essentially a fixed base index whereas the
chained Sat®/artia index almost certainly suffers from some dowrdvchain drift; (ii) there are error

terms in the econometric model which indicates that the assumptions required for the exactness of the Sato
Vartia index are not precisely satisfied and (iii) the theoretical exact equaliedseQual to @' times

the cumulated effects of Ind€ximes Index” (which is IndeX).

52The changes in utility that are implied by Ingeand Index" are no longer just changes in the true cost

of living due to the change in the availability of products but theyiatswporate changes in expenditure

due to the changing availability of products.
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The indexes listed in Table 3 are chain links. These indexes are multiplied together and
cumulated intoan overallindeX” which is listed in Table 4 below. For the 5 months
when o of the two indexes is not equal to 1, the Indeand Index” links can be
multiplied with the corresponding Satartia quantity chain link in order to obtain the
overall Feenstra chain link quantity indébhe SateVartia quantity chain link indexes
that are defined over products that are present in petiddsd t are cumulated together
to form thechainedSateVartia quantity index, Q.cn!, and this index is also listed in
Table 4. TheFeenstra chain links can be cumulated and the resulting m@egethe
QreeN that are listed in Table 4 below. Note tigt=en®® ends up at 2076& which is
substantially belovthe econometric index$2s*° = 1.39048. However, Qeen’® does end
up well abovethe corresponding SaMartia chained quantity indexXQsver®® = 1.1437.
Recall that the cumulative effects of changes in thdadibty of products was 1.0559
Indexé®”. This factor timeRsvcr® is equal taQreen.

Table 4: The Econometric CES Quantity Index Qed, the Feenstra Methodology
Chained Quantity Index Qreen!, the Maximum Overlap Chained SateVartia

Quantity Index Qsvcr!, the Implicit Fixed Base Fisher Quantity Index @, the

Maximum Overlap Chained Implicit Fisher and TSrnqvist Quantity Indexes, Qrcni'

and Qrcn'' and Indext”

Qces  OQreen'  Qsven' Or' Qrchi’ Qrcn'  Index”
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.70822 1.68506 1.68506 1.67654 1.67654 1.67959 1.00000
1.45934 1.45737 1.45737 1.43119 1.44843 1.45157 1.00000
2.06216 2.04785 2.04785 2.05425 2.03514 2.039D 1.00000
1.96224 1.94849 1.94849 1.94364 1.94881 1.94802 1.00000
1.50967 1.46626 1.46626 1.46955 1.46834 1.46708 1.00000
1.86844 1.79165 1.79165 1.83988 1.76398 1.77489 1.00000
1.32019 1.25591 1.25591 1.36598 1.24499 1.25137 1.00000
1.46936 1.35322 1.28155 1.44452 1.33374 1.34011 1.05593
10 1.46559 1.34105 1.30456 1.43629 1.32615 1.33234 1.02797
11 1.51089 1.38673 1.30604 1.46004 1.35480 1.36467 1.06178
12 1.60650 1.49331 1.40642 1.57386 1.45456 1.46740 1.06178
13 1.49921 1.34230 1.26419 1.43404 1.31487 1.32408 1.06178
14 1.35077 1.21896 1.14803 1.30245 1.19262 1.20208 1.06178
15 1.40904 1.28550 1.21070 1.38278 1.25881 1.26769 1.06178
16 1.44601 1.32412 1.24707 1.42560 1.29867 1.30661 1.06178
17 1.57935 1.39406 1.31294 1.50114 1.36386 1.37377 1.06178
18 1.77812 1.60334 1.51004 1.72526 1.56928 1.58030 1.06178
19 1.72916 1.55007 1.45987 1.68995 1.51792 1.52888 1.06178
20 1.50465 1.34887 1.30758 1.46230 1.31345 1.32761 1.03158
21 1.52512 1.38649 1.34405 1.51266 1.35229 1.36703 1.03158
22 1.79491 1.61959 1.57001 1.77473 1.58028 1.59666 1.03158
23 1.54974 1.41773 1.34274 1.51642 1.37851 1.39228 1.05585
24 1.39064 1.28832 1.22018 1.36238 1.25971 1.26775 1.05585
25 1.94418 1.76604 1.67262 1.89281 1.72944 1.73931 1.05585
26 1.67637 1.49690 1.41773 1.59158 1.46532 1.47133 1.05585
27 1.53951 1.41916 1.34410 1.53355 1.38467 1.39196 1.05585

OCONOOUITEAWNBRP|
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28 1.67520 1.47625 1.39816 1.59504 1.43565 1.44583 1.05585
29 1.56533 1.41286 1.33812 1.53249 1.37286 1.38351 1.05585
30 1.74361 1.55386 1.47167 1.68660 1.50914 1.52125 1.05585
31 1.72272 1.55555 1.47327 1.67916 1.50583 1.51999 1.05585
32 1.62124 1.44942 1.37276 1.60409 1.44302 1.43754 1.05585
33 1.51424 1.30870 1.23947 1.42693 1.29072 1.28548 1.05585
34 1.45108 1.31558 1.24599 1.43000 1.29625 1.29322 1.05585
35 1.76007 1.66510 1.57703 1.83588 1.63494 1.63344 1.05585
36 1.52947 1.34723 1.27596 1.49490 1.32559 1.32217 1.05585
37 0.91877 0.79504 0.75299 0.89098 0.78581 0.78270 1.05585
38 0.90334 0.79668 0.75454 0.87230 0.78609 0.78361 1.05585
39 1.39043 1.20762 1.14374 1.32139 1.18517 1.18376 1.05585

We also compare &4, Qsv' and Qeen to the fixed basémplicit Fisher quantity indeéX
Q' and the maximum overlap chain&dplicit Fisher andTSrnqvist quantity indexes,
Qrcn' and Qent, which are also listed in Table 4. The&guantity indexes are plotted o
Chart 8
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It can be seen that the CES quantity index that is based on the direct estimation of the
CES utility function, Qed, is the(mostly) highest cave on Chart 8The second highest

line, the fixed basenplicit Fisher quantity index €J, provides the closest approximation

to Qced. The 4 remaining quantity indexes are chained indexes and they all suffer from

53 This index uses the maximum overlap Fisher price indeasPthe deflator for total expenditures. The
implicit Fisher and TSrngvist chained quantity indexes are construbte deflating total period t
expenditures 'eby the maximum overlap Fisher and TSrngvist chained maximum overlap prices indexes,
Prer' and Ren' respectively. All three of these implicit quantity indexes are normalized to equal 1 in month
1. The maximum werlap chained Fisher and TSrnqvist price indexes approximate each other closely and
thus Qchf closely approximates-gn(.
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some downward chain drift. The Feensitantity index, @eenl, is the closest to &4,
followed by thechainedSateVartia quantity index Qsv' and Qcr'. Finally, the chained
Fisher andr'Srnqvistimplicit quantityindexes Qrcr' and Qrcrl, arethe lowestcurves on
Chart 8and the furthest frm Qced.>*

We will now define the implicit price indexes that correspond ¢edQQsv' and Qeen-
The month t (unnormalized) price index that correspondsct®d, Puced’, is defined as
period t expenditure' divided by Qe¢:

(72) Puced™ ! €/Qces; t=1,.,T.

The normalized CES implicit price index for month t is defined ased !
Puced’/Puces'” for t = 1,..., T.Puced is listed in Table 5 below.

Forming the implicit price index that corresponds to the chained-\Baitta index Q\' is
more complicated. Denote the month t Sdgatia chain link index as @' for t =
2,3,...,T. Denote Ras the month t adjusted expenditure ratio for t = 2,3,...,T. If the
products purchased in monthsltand t are the same, theheuals the expenditure ratio,
g/e’'t. However, if the number of products purchased in morithsand t is different,
then R! [$n 1" noiy P}/ [$n. 11019 Pt tgn* Y]. The month tSateVartia chain link
implicit price index Pusv! is defined as RQus\! for t = 2,3,...,T. These chain links are
cumulated together to form the Satartia implicit chained price index, uBu' !
Pusw' Y Prusvt for t = 2,..., T where vt ! 1. This inax is listed in Table 5.

The month t (unnormalized) price index that corresponds-tenQPureen”, is defined as
period t expenditure divided by Qeen':

(73) PureeN” ! €/Qreen; t=1,..,T.

The normalized Feenstra implicit price index for month t is defined uageP !
Pureen"/Pureent” for t = 1,...,T. Beeen is also listed in Table 5.

Finally, IndeX™ is an index which represents the cumulative ¢ffen the cost of living

of changes in the availability of products. This index for month t is the ratio of the month
t Feenstraimplicit chained price index, JPeeN, divided by the chained Satartia
implicit price index, Bsw":

(74) IndeX™ ! Pureen/ Puswvi; t=1,...T.
Index™ is also listed in Table 5 along withed (the CES unit cost function index that

resulted from Model 2 above and is listed in Table 1) aadited base Fisher index'P
that is also listed in Table 5

54 Diewert (1978) showed that the Fisher and TSrngvist indexes approximate each other to the second order
around an equal price agdantity point. However, the changes in prices and quantities in our data set were
so large, it was uncertain whether the approximatied ®Prch would hold. Evidently it does hold.
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Table 5: Unit Cost and Implicit CES Price Indexes Estimated from Models 2 and 4,
Pces and Puced, the Implicit Chained SatoVartia Price Index Pusy, the Implicit
Chained Feenstra Price IndexPureen!, Index™ and the Fixed Base Fisher Index P

Pces' Puces Pusv' Pureen'  Index™ Pe!
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.00508 0.98359 0.99711 0.99711 1.00000 1.00218
0.99521 1.00369 1.00504 1.00504 1.00000 1.02342
0.94121 0.93029 0.93679 0.93679 1.00000 0.93388
0.91406 0.93074 0.93730 0.93730 1.00000 0.93964
1.00557 1.01226 1.04223 1.04223 1.00000 1.03989
1.08119 1.04046 1.08505 1.08505 1.00000 1.05662
1.15826 1.19753 1.25882 1.25882 1.00000 1.15739
112605 1.13261 1.23964 1.22981 0.99207 1.15209
10 1.13885 1.12326 1.23253 1.22757 0.99597 1.14617
11 1.11631 1.10248 1.21177 1.20119 0.99127 1.14088
12 1.09576 1.10469 1.19889 1.18842 0.99127 1.12760
13 1.07865 1.05886 1.19305 1.18264 0.99127 1.10698
14 1.09705 1.09361 1.22255 1.21187 0.99127 1.13419
15 1.02962 1.03612 1.14569 1.13569 0.99127 1.05579
16 1.01928 1.03616 1.14150 1.13154 0.99127 1.05099
17 0.95211 0.93755 1.07152 1.06217 0.99127 0.98640
18 0.86187 0.86830 0.97143 0.96295 0.99127 0.8949D
19 0.86582 0.87013 0.97921 0.97066 0.99127 0.89032
20 0.86905 0.86511 0.96942 0.96502 0.99546 0.89016
21 0.87341 0.88722 0.98038 0.97593 0.99546 0.89453
22 0.84816 0.84505 0.94080 0.93653 0.99546 0.85466
23 0.85830 0.86932 0.95785 0.95027 0.99208 0.88842
24 0.87495 0.87123 0.94792 0.94042 0.99208 0.88930
25 0.77932 0.78295 0.86881 0.86193 0.99208 0.80421
26 0.81396 0.80363 0.90717 0.89998 0.99208 0.84644
27 0.87388 0.88298 0.96550 0.95785 0.99208 0.88641
28 0.79552 0.77627 0.88792 0.88089 0.992@B 0.81528
29 0.83771 0.83908 0.93705 0.92963 0.99208 0.85705
30 0.83003 0.81745 0.92460 0.91728 0.99208 0.84508
31 0.85502 0.85125 0.95025 0.94273 0.99208 0.87333
32 0.90137 0.89022 1.00369 0.99574 0.99208 0.89973
33 0.89378 0.87329 1.01851 1.01045 0.99208 0.92673
34 0.93133 0.93999 1.04508 1.03681 0.99208 0.95385
35 0.98200 1.02941 1.09681 1.08813 0.99208 0.98690
36 0.94110 0.94062 1.07638 1.06786 0.99208 0.96237
37 1.03787 1.01774 1.18552 1.17613 0.99208 1.04948
38 1.07081 1.05781 1.20900 1.19948 0.99208 1.09545
39 0.91069 0.90282 1.04779 1.03950 0.99208 0.94999

OCO~NOUDA,WNE ~

The price indexes listedhiTable 5 are plotted in Chart B can be seen that the CES
price index that was estimated using Model gsdPis fairly close to the implicit CES
price ndex, Rced, that was estimated using the parameter estimates from Model 4.
Recall that the elasticity of substitutigrthat was estimated using Model 2 was (BsBg
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the first econometric specification and was 6.0 using the Feenstra econometric
specifiation whilethe ( that was estimated usindodel 4 was somewhdaarger at 6.8.
Thesedifferencesin ( did not make much difference to the overall true cost afdithat

was estimated by the varioesonometric models. Howevewjth a higher (, the gains

and losses from new and disappearing products are smaller; i.e., IndeX” ends up at
0.99208 which indicates the overall reduction in the true cost of living atetite of
month 39 due to changes product availabikis0.79percentage points using theohiel

4 parameter estimates whereas the decrease in the cost of living usmgaihend final
Model 2 estimatefor ( was 1.7and 0.93percentage pointsespectively.The larger(

from Model 4 causekdex™ to be closer to 1 and this causies implicit chained Sato
Vartia price index Bsv' to be very close to the implicit chained Feenstra price index
Pureen. If the Model 4 equations fit the data perfectly, themeR would be equal to
Puced for each month tHowever, the fit is not exact andideen' (and Risv) lie well
above Bced as t increasesThe fixed base Fisher price index! Bliscussed earlier
provides a fairly closapproximation to the econometrically estimated CES price indexes
Pced and Riced.
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‘ Pced — Puces — Pusv! — Pueeen! Index™ PFt‘

The nethodology that was explained in this sewtis rather involved. Ae benefit from
using this methodologywhich relied on estimating the CES utility functjos that we
obtained an estimate for the elasticity of substitution which is more réfiside the
estimate that was obtained by estimating the CES unit cost funetiog our initial
econometric specificatiortHowever, once we have a new estimate for the elasticity of
substitution we can use the methodology that was developed in section 5 mtorde
obtain new estimates for Indé&and Index defined by (63) and (§4The point estimate

for s from Model 4 iss" ! 0.87374 and thus the corresponding rAss$ 1) ="6.92016

%5 The log likelihood that was obtained by estimating Model 4 was faughr than the log likelihood that
was obtained estimating Model 2.
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and the corresponding = 1/(1's’) = 6.8371 Using f = "6.92016 , we usthe formula
(63) and (6% to evaluate Indekand Index and we obtain the following counterpart to
Table 2 in section 5.

Table 6. Indexes Measuring the Effects of Changes in the Price Level due to the
Availability of Products when ( = 6.8371

Month t Index2! Indexst
9 0.9933 1.0000
10 1.0000 1.0033
11 0.9960 1.0000
20 1.0000 1.0036
23 0.9971 1.0000

The overall effect on the price level of the changes in the avajabilpproducts is equal
to 0.99331.0033 0.9960 1.003@ 0.9971 = 0.9933a cecrease in the price leveler the
sample period of about.&%. This estimate for the gainsom changes irproduct
availability is similar to oudirect estimate for thBlodel 4 benefit which was a decrease
in the price level over the sample period of%%%

In Appendix B, we will adapt FeenstraOs double differencing methodology to obtain an
alternative method for estimating the elasticity of substitution in the context of the direct
estimation of the CES utility function.

Potential problems with the eEnstra methodology for measuring the gains from
increased product availability are the following:

¥ The reservation prices which induce purchasers to demand 0 units of products that
are not available in a period are infinite, which a priori seems implatgsiol
¥ The CES functional form is not fully flexible.

Thus in the following section, we will introduce a flexidienctional form that will
generate finite reservation prices foew andunavailable products and hence will
provide an alternative methddgy for measuring the benefits of new products (and the
losses for disappearing products).

7. The KonYs-ByushgensFisher Utility Function

The functional form for a purchaserOs utility function f(q) that we will introduce in this
section is the followingne®®

(75) f(q) = (" Aq)*2

56 We assume that vectors are column vectors when matrix algebra is used’ déstes the row vector
which is the transpose of g.
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where the N by N matrix A [an] is symmetric (so that A= A) and thus has N(N+1)/2
unknown ax elements. We also assume that A has one positive eigenvalue with a
corresponding strictly positive eigenvector and the remgiifil eigenvalues are
negative or zer®’ These conditions will ensure that the utility function has indifference
curves with the correct curvature.

KonYs and Byushgens (1926) showed that the Fisher (1922) quantity index
Qr(p%,pt, b)) ! [pO-aipr-a/pP-oPpt-q]Y2 is exactly equal to the aggregate utility ratio
f(q)/f(q°) provided that all purchasers maximized thidity function defined by (7pin
periods 0 and Where § and g are the price vectors prevailing during periods 0 and 1
and aggregate upchases in periods 0 and dre equal toq® and d¢. Diewert (1976)
elaborated on this result by proving that tiidity function defined by (7bwas aflexible
functional form; i.e., it can approximate an arbitrary twice continuously differentiable
linearly homogeneous function to the accuracy of a second order Taylor series
approximation around an arbitrary positive quantity vectoiSipnce the Fisher quantity
index gives exactly the correct utility ratio foretfiunctional form defined by (J5he
labelledthe Fisher quantity index as@periative index.

Assume that all products are available in a period and purchasers face the positive prices
p! (pi...,m) >> On. The first order neceasy (and sufficient) conditionthat can be used

to solve the unita@st mnimization problem defined by Ydwvhen the utity function f is

defined by (7% are the following conditions:

(76) p =1Ad/(q"Ag)*?;
(77 1 = (dAg)*2

Multiply both sides of equation n in (/By ¢ and sum the resulting N equations. This
leads to the equationg=1(g"Aq)*2 Solve this equation fdt and use this solution to
eliminate thel in equations (76 The resulting equations (where equatiois multiplied

by gn) are the followingystem of inverse demand share equations:

(78) 1! pnan/P-g = gn Sk=1" ankGi/q"Aq ; n=1,.,N
where ax is the element of A thas in row n and domn j for n, k= 1,...,N. These
equations will form the basis for our system of estimating equations in subsequent

sections. Note that they are nonlinear equations in the unknown parameters a

It turns out to bauseful to reparameteszthe A matrix indefinition (79. Thus we set A
equal to the following expression:

(79 A=bb" + B; b>> 0y ; B =BT ; B is negative semidefinite; Ber O.

57 Diewert and Hill (2010) show that these conditians sufficient to imply that the utility function defined
by (75) is positive, increasing, linearly homogeneous and concave over the regularity redigngS>>
On and Ag >> Q}.
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The vector B! [bs,...,bN] is a rowvector of positive constants and sd i a rank one
positive semidefinité&N by N matrix.The symmetric matrix B has N(N+1)/2 independent
elements k but the N constraints Bgeduce this numbesf independent parametedny

N. Thus there are N independent parameters in the b vector arid J{Nhdependent
parameters in the B atrix so that bb + B has the same number of independent
parameters as the A matrix. Diewert and Hill (2010) showed that replacing Al byBb
still leads to a flexible functional form.

The reparameterization of A by bk B is useful in our present caxt because we can

use this reparameterization to estimate the unknown parameters in stages. Thus we will
initially set B = Qun, a matrix of 00s. The resulting utility function becomes #(q)
(g"bb"q)¥? = (b'gb'q)¥? = b'q, a linear utility functio. Thus this special case of ()79

boils down to thdinear utility function model that we have already estimated as Model 3
above.

The matrix B is requiretb be negative semidefinite. We can follow the procedure used
by Wiley, Schmidt and Bramble (1973) andeert and Wales (1987and impose
negative semidefiniteness on B by setting B equalaG™ where C is a lower triangular
matrix 58 Write C as [&,&...,8'] where & is a column vector for k = 1,...,K. If C is lower
triangular, then the first"kL element®f ¢ are equal to O for k = 2,3,...,Nhus we have

the following representation for B:

(80) B ="CCT
=" $n:1N CnCnT

where we impose the following restrictions on the vectdrgnrder to impose the
restrictions B = Oy on B5®

(8)cq =c"'q'=0; n=1,..N.

If the number of products N in the commodity group under consideration is not small,
then typically, it will not be possible to estimatk of the parameters in the C matrix.
Furthermore, typically nonlinear estimation is not successful if one attempts to estimate
all of the parameters at once. Thus we will estimate the parameters in the utility function
f(q) = ("AQ)¥? in stages. In théirst stage, we estimate the linear utility functigg) =

b'g. In the second stage, we estimate f(q) Z[bfgf " c'c'"g)*? where é7 !
[cat,ct,...,avl] and é'q" = 0. For starting coefficient values in the second nonlinear
regression, we use the flrestimates for b from the first nonlinear regression and set the

8 C = [a is a lower triangular matrix if¢ = O for k > n; i.e., therare 00s in the upper triangle. Wiley,
Schmidt and Bramble showed that setting BGC' where C was lower triangular was sufficient to
impose negative semidefiniteness while Diewert and Wales showed that any negative semidefinite matrix
could be represead in this fashion.

59 The restriction that C be upper triangular means thatikt have at most one nonzero element, namely

cnN. However, the positivity of ‘gand the restriction™q" = 0 will imply that &' = Ov. Thus the maximal

rank of B is N 1.
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starting é! On.5° In the third stage, we estimate f(q) Z[@p" " c'c!™" ¢*c?"|q)2 where

! [eihed...,a], t'g =0, 7! [0,c%,...,av1] and &'g" = 0. The starting coefficign
values are the final values from the second stage WithQx. In the fourth stage, we
estimate f(q) = (fbb™ " c'c!™" c2c?™" A3c2Tg)Y? where éT! [citct,...,avl], ¢tTq = 0,

2Tl [0,ct,..., 1], 2T = 0, 7! [0,0,cL,...,aY] and éq" = 0. At each stage, the log
likelihood will generallyincreasé! We stop adding columns to the C matrix when the
increase in the log likelihood becomes small (or the number of degrees of freedom
becomes small). At stage k of this procedure, it turns outwkaare estimatingthe
substitution matrices of rank' k that isthe most negative semidefinite that the data will
support. This is the same type of procedure that Diewert and Wales (1988) used in order
to estimate normalized quadratic preferences andtérened the final functional form a
semiflexible functional form. The above treatment of the KBF functional form also
generates a semiflexible functional form.

Instead of developing the above theory for the KBF utility function, we could develop the
anabgous theory for the dual KBF unit cost function, d(fp"A*p)“?2 where A = b'bT

" C'C'T where C is a lower triangular N by N matrix that satisfieS € = Oy for the
reference price vector' pThe special case of this unit cost function where=@n/n

leads to the Leontief (no substitution) unit cost function, c¢(p)'p Which we estimated

as Model 1 in section 5 above. However, this model did not fit the data very well at all,
which is not surprising since it is unlikely that there would be zehstgutability
between closely related products. Model 3, which assumed that the products were
perfectly substitutable fit the data much better than Model 1. Hence we will not estimate
the KBF unit cost function model in this studince it is unlikely tdfit the data very
well.®?2 Furthermore, a major goal of our econometric efforts is to estimate reservation
prices that will induce purchasers of the group of products under consideration that result
when a product is not available. This can be done rathsly ad we estimate the
purchasersO utility function rather than their dual unit cost function.

8. The Systems Approach to the Estimation of KBF Preferences

Our system of nonlinear estimating equations Mbidel 5 is the following stchastic
version ofequations (7pabove where A = b' clct™

(82) st = gt $k=1"° akOkY[Bn=12"Fm=1° anmOnigm] + 3t t=1,..,39i=1,...,19

whereb™ = [by,...,hg], ¢!T = [cid,...,ad"] andthe error term vectorg™ = [31,...31] are
assumed to be distributed as a multivariate normal random variable with mean wector O

60 We also use the constraiff@ to eliminate one of thestfrom the nonlinear regression.

611f it does not increase, then the data do not support the estimation of a higher rank substitution matrix and
we stop adding columns to the C matrix. The log iil@@d cannot decrease since the successive models
are nested.

62f the A matrix in (75) has full rank N, then it can be shown that the dual unit cost function is equal to

c(p) = (FA"p)*2.
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and varianceovariance matri$ for t = 1,...,3%3 In order to identify thgparameterswe
impose the following normalization:

(83) bio= 1.

We also require anleer normalization on the elements éf ice., we need to satisfy the
constraint &q° = 0 for some positive vector.d/Ve chose gto equal the sample mean of
the observed'yectors; i.e., we sef ¢ (1/19)%=1'° g'. We used the constraintg = 0 to
solve for @' =" $n=1'% crlgn /one” and we substituted thige into equations (82 Since
the sharesi'ssum to one for each period t, all 19 error teGhfor i = 1,...,19 cannot be
distributed independently so wiropped the equation for product ff®m our list of
estimating equatiornf®r Model 5

We used the nonlinear regression software package in Shazam to estimate the 36
unknown Rk and @! in equations (82 The starting values for the, vere the final
estimates for th&, from Model 3 abovend the starting values for the' evere set at

0.01 for each n = 1,...,18. The initial log likelihood was 3074.663 and the final log
likelihood was3216.919 a gain of 142.603 for adding 18 new parameterthe linear

utility model The equation by equah R values were as follows).9661 0.9787

0.9623 0.9889 0.9608 0.9521, 0.9628 0.8002 0.9657 0.9752 0.8337 0.9224 0.9867

0.8936 0.9673 0.9555 0.9064and0.9599 These are fairly high Reonsidering that the
dependent variables are shares.

In order to determine the effects of changing the reference quantity véctareq
reestimated the above model but choswaqual 1, a vector of ones of dimension 19.
Thus in this case, we set the last component of the vettequal to the followig
expression:

(84) cigt =" $n-1'8 .

The estimated b and wectors changed when we reestimated Mdslelith the new
normalization (8% but the predicted values for each observation turned out to be identical
to the predicted values generated byiaitial Model 5 and thus theRor each equation

did not change and the final log likelihood also did not change. Thus it appears that the
choice of ¢ does not matter, as long as the chosen reference védesostrctly positive.

Thus in subsequent meld where we added additional columns to the C matrix, we chose
g to equal 1e. This choice of gled to simpler programming codes for our subsequent
nonlinear regressions.

Our system of nonlinear estimating equationsMorle!/ 6 are equations (§2avhere A =

bb" " clclT" 22T with 2T = [0,G2,...,a¢] and the normalizationsi= 1, qot =" $n=118
cnland @ =" $n=2'8 ci2. Thus there are 18 + 18 + 17 unknown parameters to estimate in
the A matrix. However, the nonlinearaximum likelihoodestimaton package in Shazam

63 Again this is a slightly incorrect econometric specificatiorce 3:' will automatically equal 0 if product
n is not present during month t.
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did not converge for this model. The problem is that the error specification that is used in
the system command for the Nonlinear estimation option in Shazam also estimates the
elements of the variance covariance ma¥ixrhus for ou Model 6, it is necessary to
estimate the 53 unknown parameters in the A matrix plud&9 = 171 unknown
variances and covariances. This proved to be a too difficult task for Shazam.

Thus in the following section, we will develop an alternative estonadtrategy: we will

stack up our 18 product estimating equations into a single estimating equation. In this
setup, we will only have to estimate a single variance parameter instead of estimating 171
such parameters. The cost of using this strategy wila Isomewhat incorrect variance
specification; i.e., it is not likely that all product equations will have exactly the same
variance but it will turn out that the predicted values for the product shares are quite close
to the actual product shares so a esmat incorrect variance specification will not be too
troublesome.

9. The Single Equation Approach to the Estimation of KBF Preferenceddsing Share
Equations

For Model 7, we stacked the first 18 Model 5 estimating shageagons listed in
equations (8Rinto a single equation and estimated the 18 unknown parameters in A =
bb" with b ! [by,by,...,lng and he = 1 using the single equation Nonlinear command in
Shazam. The final log likelihood w2879.380and the Rwas 0.9818. The estimated b
were simiar to the corresponding estimates that we got using the systems approach to
estimate Model 3 but there were some differences.

An advantage of our present single equation approach is that we can now easily drop the
20 observations where the product wassing®* Thus forModel 8, we dropped the 20
observations for products 2, 4 and 12 for the months when these products were missing.
Thus the number of observations for this new model is equal td 839 20 = 682. We

found that the parameter estimates tioms new model were exactly the same as the
corresponding parameter estimates that we obtained for Model 7. However, the new log
likelihood decreased t8301.735and the new Rdecreased to 0.9814 (from the previous
0.9818).

In the models which followyve will continue to drop the 20 observations that correspond

to the months when the products were missing. Thus when we refer to the estimating
equaions (83, we are now assuming that the 20 missing product observationbémve
dropped from equationsZ8 Moreover, we also drop the 39 observations that correspond
to the 19" product®®

Model 8 is the same as Model 5 above except we now use the single equation estimating
strategy. Thus we have where A ="Blbclc'™ with the normalizationsb = 1 and &' =
" $n=1'8 cl. We used the final estimates for the components of the b vector from Model 7

64 The error terms will automatically be O for these 20 observations.
85 Since the shares within one period must sum to 1, the corresponding error terms cannot all be
independethy distributed and thus we drop one set of shares from the estimating equations.
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as starting coefficient values for Model 8 and we uséd=00.001for n = 1,...,18 as
starting values for the components of the ¢ vector. The final log liladilf@r this model
was 2445.888, an increase 4#4.153for adding 18 new parameters to the Model 7
parameters. The?@creased to 0.9884

Model 9 adds a new column to the A matrix. Thus we have AE"btic'™ " ¢2c?T with

¢?" = [0,64...,as] and thenormalizations b =1, @' =" $n=1¥ et and @ =" $n=o'8
c.?. We used the final estimates for the components of the blamttors from Model 8
as starting coefficient values for Model 9 and we us@d=00.001for n = 2,...,,18 as
starting valuegor the nonzero components of thievector. The final log likelihood for
this model wa2565.896 an increase of 120.0G8r adding 17 new parameters to the
Model 8 parameters. The’ Ricreased t®.9907

Model 10 adds another column to the A matrihuk we have A = db' clc!™" ¢ "

c3c3T with 87 = [0,0,63,...,a9°] and the normalizationsid= 1, ao' =" $n=8 cnl, 1?2 ="
$n=2% c? and a® =" $n=3'® c°. We used the final estimates for the components of the b,
ct and & vectors from Modl 9 as starting coefficient values for Model 10 and we used
¢, = 0.001for n = 3,...,18 as starting values for the nonzero components of teetor.

The final log likelihood for this model w&$614.526 anincrease of 48.63for adding 16
new paramets to the Moded parameters. The?creased t®.9919

Finally, Model 11 adds another column to the A matrix. Thus we have A™="kbtic!™ "
c2c?T " 33T AT with ¢*T =[0,0,0,0%,...,a4*] and theadditional normalizatiom;¢* =

" $n-4'® c:*. As usual, ve used the final estimates for the components of thg b and
¢ vectors from Model 1@s startingcoefficient values for Model 1and we usedqt =
0.001for n = 4...,18 as starting values for the nonzero components of thector. The
final log likelihood for this model wa2629.182 an increase df4.656for adding 5 new
parameters to the Model JarametersThus the increase in log likelihood is now less
than one per additional paramef€he single equatiorR? increased to 0.992Mowever,
this single equation Hs not comparable to the equation by equatiéth&t we obtained
using the systems approach in the previous section. The compafdbteeBch separate
product share equation are as folld¥8:9859 0.993Q 0.9773 0.9853, 0.9814 0.9543
0.9755 0.8581 0.976Q 0.9694 0.8923 0.9278 0.9908 0.9202 0.9874 0.9566 0.9111
and 09653 The average Hs 0.9560which is a relatively high averagehen estimating
share equatiorfs.

5 These equation by equatiort Rre the squares of the correlation coefficients between the actual share
equations for product n and the corresponding predicted valuesheononlinear regression. We included

the 20 zero share and quantity product observations since our model correctly predicts these 0 shares. These
0 share observations were also included in the Model 4 systems regression in the previous section.

57 Note trat the KBF Model 11 average?R0.9560, is above the Model 4 direct CES utility function
average R which was 0.9439. The present model is much more flexible and hence is likely to generate
more reliable estimates of elasticities of demand More impdyrtémt our purposes is the fact that the
present model will generate finite reservation prices for the missing products (rather than the rather high
infinite reservation prices that the CES model generates).
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Since Model 11 estimates 84 unknown par@mseand we have only 682 degrees of
freedom, we have only about 8 degrees of freedom per parameter at thidMstager,
the increase in log likelihood going from Model 10 to 11 was relatively siftalis we
decided to stop adding columns to the C matt this point

With the estimated b and ¢ vectors in hand (denote therh asdo&” for k = 1,2,3,4),
form the estimated A matrix as follows:

(85) A" ! b'BT " el T (22T (F T A AT

and denote the ij element of As §" for i,j = 1,...,19. Thepredicted expenditure share
for product i in month t is% defined as follows:

(86) s ! g $k=1"° &k Ok [$n=1""Bm=11° @m Gn'OIm] ; t=1,.,39j=1,..,19.
Thepredicted price for product i in month t9 defined as follows:
(87) p* ! € k=1 k" Ok [$n=1"Bm=1"° &m On'Om] ; t=1,.,39j=1,..,19

where &! p'-gtis period t sales or expenditures on the 19 products during m&httet.
calculated th@redicted price defined by (8)/for all products and all months.

Of particular interest are the predicted prices for products 2 and 4 for me8tasdLfor
product 12 for months 10 and 22 when these products were not availaflae
predicted prices for products 2dh4 for the first 8 months in our sample period were
1.62, 1.56, 1.60, 1.52, 1.61, 1.52, 1.70. 1.97 and 1.85, 1.46, 1.80, 1.37, 1.77, 1.83, 1.88,
2.27 respectively. The predicted prices for product 12 for months 10 a2@l\26re 1.37,

1.20, 1.22 and 1.28These prices are rather far removed from the infinite reservation
prices implied by the CES model.

However, there is a problem with our model: even though the predicted expenditure
shares are quite close to the actual expenditure shéeepredicted prices are not
particularly close to the actual prices. Thus the equation by equatiorf Rr the 19
products were as follow8:0.7571 0.8209 0.8657 0.8969 0.9025 0.7578 0.866Q

0.0019 0.2517 0.1222 0.000Q 0.0013 0.9125 0.6724 0.4609 0.7235 0.5427, 0.8148
and0.4226 The average Hs only 0.5681 which is not very satisfactory. How can the R

for the share equations be so high while the correspondirigr fhe fitted prices are so

low? The answer appears to be the following one: when a ioausually low, the
corresponding quantity is unusually high and vice versa. Thus the errors in the fitted price
equations and the corresponding fitted quantity equations tend to offset each other and so

 The predicted priceipis also equal to [ef(q')/, g/f(q?) where f(g)! (q"A'g)2 This follows from the

first order necessary conditions for the month t utility maximization problem (with no errors) which are
p/e = 7(gY)/f(g") where § is the month t vector of predicted prices.

59 For the20 observations where the product was not available, we used the predicted prices as actual prices
in computing these RThus for products 2, 4 and 12, th&liRted above are overstated.
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the fitted share equations are fairly close todbwial shares whereas the errors in the
fitted price and quantity equations can be rather large but in opposite directions.

The above poor fits for the predicted prices caused us-¢xamine our estimating
strategy.The primary purpose of our estinati of preferences is to obtain OreasonableO
predicted prices for products which are not available: primary purpose is not the
prediction of expenditure shares; it is the prediction of reservation prices! Thus in the
following section, we will switch fsm estimating share equations to the estimation of
price equations.

10. The Single Equation Approach to the Estimation of KBF Preferences Using
Price Equations

Our Model 12 system of estimating equations uses prices as the dependent variables:
(88) pit! € $k=11° ak /[ $n=11"Fm=11° amOnlgm] + 3*; t=1,.,39j=1,.,18

where the A matrix is defined @s=bb" " c'c!™" ¢?c®T " 3c®™" ¢*c*T and the vectors b

and ¢ to ¢ satisfy the same restrictions as in Model d.thie previous section. We stack
up the esimating equations defined by (B&ito a single nonlinear regression and we
drop the observations that correspond to products i that were not available in period t.

We used the final estimates for the componefitthe b, é, ¢, ¢ and ¢ vectors from
Model 11 as starting coefficient values for Model 12. The initial log likelihood of our
new model using these starting values for the coefficients4d&a<$576 The final log
likelihood for this model wa$18.881 an increase 0fl03.305 Thus switching from
having shares to having prices as the dependent variablesgdificantly change our
estimatesThe single equationRvas0.9453 We used our estimated coefficients to form
predicted pricesip using equation$87) evaluated at our new parameter estimates. The
equation by equation 2Reomparing the predicted pricésr the 19 productsvith the
actual pricesvere as follows? 0.8295, 0.8621, 0.9001, 0.9163, 0.8988, 0.8319, 0.9134,
0.0350, 0.2439, 0.2754, 0.023B0068, 0.8704, 0.6951, 0.4211, 0.8082, 0.6180, 0.8517
and 0.2868The average Rwas 0.5941.

Since the predicted prices are still not very close to the actual prices, we decided to press
on and estimateWodel 13 which added another rank 1 substitutioratnx to the
substitution matrix; i.e., we sét=bb" " clc!T" c?c?T " 33" ¢*c*T" ¢>c> where €T =
[0,0,0,0,&%,...,a¢°] and the additional normalizationge=" $n=5 cx°.

We used the final estimates for the components of thé, b?,«c® and ¢ vectors from
Model 12 as starting coefficient values for Model 13 along with=c0.001 for n =
5,6,...,18. The initial log likelihood of our new model using these starting values for the
coefficients was 518.881. The final log likelihood for tmedel was 550.346an

0 Again, for the 20 observations where the product was not #&lajlave used the predicted prices as
actual prices in computing thesé. Rs usual, these ?Rare just the squares of the correlation coefficients
between the 39 predicted prices and the actual prices for product i fori=1,...,19.
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increase of31.465. The single equation Rwas 0.9501. We used our estimated
coefficients to form predicted prices” pusing equations (87 evaluated at our new
parameter estimates. The equation by equatforoRiparing the predictegrices for the
19 products with the actual prices were as follo@8295 0.8621 0.9001 0.9163
0.8988 0.8319 0.9134 0.035Q 0.2439 0.2754 0.0236 0.0068 0.8704 0.6951 0.4211
0.80820.618Q 0.8517and0.2868

Since the increase in log likebod for Model 13 over Model 12 wdairly large, we
decided to add another rank 1 matrix to the A matrix. Thusftete! 14, we setA = bb’
"cletT" 2T " 3BT AT T BT where €T =[0,0,0,0,0,6°,...,a¢] and the
additional normaliztion cis® =" $n=68 c:°.

We used the final estimates for the components of the t7, ¢, , ¢ and € vectors from
Model 13 as starting coefficient values for Moddl dlong with ¢® = 0.001 forn =
6,7,...,18. The final log likelihood for this metiwas568.877 an increase df8.531 The
single equation Rwas 0.%27.

Model 14 hadl1ll urknown parameters that weestimated (pls a variance parameter).
We hadonly 680 observations and so we decided to call a halt to our estimation
procedure. Als@onvergence of the nonlinear estimation was slowing down and so it was
becoming increasingly difficult for Shazam to converge to the maximum likelihood
estimatesThus westopped ousequentiakstimation process at this point.

The parameter estimates fdodel 14 are listed below in Table'y.

Table 7: Estimated Parameters for Model 14

Coef Estimate t Stat Coef Estimate tStat Coef Estimate t Stat

by 1.3450 11.388 ci* -0.0780 -0.113 c* 0.1525 0.256
by’ 1.3138 10.769 ¢ -0.7121 -0.724 cis*  -0.0821 -0.053
bs’ 1.4318 11.311 ¢ -0.0973 -0.242 c¥  -0.6147 -0.812
ba’ 1.5697 11.541 c&& -0.6352 -1.275 ci¥  -1.5855 -1.128
bs’ 1.3709 11.226 c¢* -0.6146 -1.378 ci3¥  -0.2332 -0.311
be’ 2.0885 11.886 c&& 1.1453 1.811 cii¥  -0.1605 -0.242
b’ 14180 11.403 c® -0.3882 -1.351 cis*¥  -0.6687 -1.690
bs’ 0.8216 9.021 ci®  -0.5408 -1.728 ci&¥  -0.2246 -0.302
be’ 0.5692 9.670 ¢ 0.9956 2.140 c.* 3.2700 3.547
bio 0.5880 9.476 c> 1.9022 1.674 ci¥  -0.3506 -0.436
b1’ 0.8010 10.010 ¢  -0.4551 -1.480 ¢ -0.0555 -0.105
b1z 1.0962 9.162 cZ  -0.7303 -1.455 c5 -0.0444 -0.118
b1z 1.2411 11.136 ¢  -0.3204 -0.795 ¢ -0.0952 -0.056
b1s 1.6071 11.124 & 0.2584 0.842 ¢ -0.2548 -0.038
bis 0.7145 10.115 c/” 0.0199 0.007 c* -0.6205 -0.887
bie 1.3384 11.465 & -0.5013 -1.128 ¢  -0.5634 -0.792
bi7 15759 7.968 ¢ 1.3620 5.405 ci;  -0.1094 -0.028

' The standard errorsfdhe estimated coefficients are equal to the coefficient estimate listed in Table 7
divided by the corresponding t statistic.
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1.3699 11.400 ci& 1.7166 4.405 ¢ -0.3085 -0.036
et 1.9832 10.031 c& 1.0262 5.104 ci3° 0.6261 0.120
e 1.6598 6.653 c&& -0.4277 -1.090 ¢/’ 0.0516 0.013
et -0.2507 -1.186 c* 0.8958 2.431 ci&° -0.0774 -0.024
et 0.1313 0.552 c&& -0.4633 -0.809 ci¢ 0.7559 0.134
cs” 0.0126 0.088 co* -0.0097 -0.041 &7 0.6127 0.225
ce™ -0.0106 -0.050 ci¢® -0.0785 -0.277 & 0.4772 0.054
o -0.3807 -1.914 ci® -0.5885 -1.064 c -0.0093 -0.028
cs¥ -0.4251 -1.856 ci° -0.1383 -0.137 ¢* 0.1776 0.380
Co™ -0.0179 -0.114 c;5° -0.0220 -0.093 c&& -0.7621 -0.300
Cio" -0.2753 -1.576 cif -0.4538 -1.183 ¢ -0.0805 -0.015
Cutt -0.9620 -4.477 cis° -0.4603 -2.033 ci° 0.0788 0.016
Ciot -0.8816 -2.693 ci¢® -0.0116 -0.064 c12° -0.4361 -0.270
Cigt 0.1146 1.524 ¢ -2.1645 -2.382 ¢° -0.9471 -0.231
Cudt -0.2175 -1.016 ci&® 0.0091 0.033 ¢ -0.6016 -0.114
Cis" -0.1262 -0.854 c* -0.5049 -0.708 c1s° 0.4660 0.979
Ci6" 0.1367 1.247 o~ 0.4895 1.341 cyX 0.3859 0.335
Ci7 -0.6792 -1.544 c* 0.2658 0.466 C16¥ 0.6562 0.103
Cigt 0.0849 0.450 c/* 0.3802 0.625 ci7° 0.1162 0.002
cZ 0.7173 1.584 c&* -0.1078 -0.118 ci&° 1.0227 0.258

The estimated$in Table 7 for n = 1,...,18 plusd= 1 are proportional to the vector of

first order partial derivatives of the KBF utility function f(q) evaluated at the vector of
ones,7 ¢f(119). Thus the B can be interpreted as estimates of the relative quality of the
19 products. Viewing Table 7, it can be seen that the highest quality products were
products 6, 17 and 4db= 2.09, h7 = 1.58, k" = 1.57) and the lowest quality products
were products 9, 10 and 1% 0.57, ho' = 0.59, hs = 0.71).

With the estimated“band & vectors in hand (denote them dsabnd & for k = 1,...,6,
form the estimated A matrix as follows:

(89 A"! b'BT " et T ¢’ M I T et T T T

and denote the ij element of As g for i,j = 1,...,19. Theredicted price for product i in
month t is defined as follows:

(90) p" ! € k=12 ak kY[ $n=11"Bm=1'° am Onigm] ; t=1,..,39i=1,...19

where &! p*-g! is period t sales or expenditures on the 19 products during month t. We
calculated theredicted prices defined by@efor all products and all months.

Of particular interest are the predicted prices for products 2 and 4 fohsnb8tand for
product 12 for months 10 and -2@ when these products were not available. The
predicted prices for products 2 and 4 for the first 8 months in our sample period were
1.62, 1.56, 1.60, 1.52, 1.61, 1.52, 1.70. 1.97 and 1.85, 1.46, 1.801.1.371.83, 1.88,

2.27 respectively. The predicted prices for product 12 for months 10 a2@l\26re 1.37,
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1.20, 1.22 and 1.28.hese predicted prices will be used as our Obesgrvation prices
for the missing products in the remainder of the paper.

The equation by equatior? fhat compareshe predicted prices for the 19 products with
the actual prices were as follow0.8274 0.8678 0.9001 0.9174 0.8955 0.8536
0.9047 0.0344 0.3281 0.4242 0.0516 0.2842 0.865Q 0.728Q 0.4872 0.8135 0.842,
0.8479and0.3210 The average Ror Model 14 was 0.6424.welve of the 19 equations
had an Rgreater than 0.70 while 5 of the equations had%de<® than 0.48°

The month t utility level or aggregate quantity level implied by the KBF modelzQ is
defined as follows:

(91) Qker'! (qTA)Y2; t=1,...39.

The correspondingBF (unnormalized) implicit price level, Pcee", is defined as period t
sales of thel9 products, ‘edivided by the period t aggregate KBF quantity levekQ

(92) Pee” ! €/Qkar ; t=1,...,39.

The month KBF price index, Pker', is definedas the month t KBF price level divided by
the month 1 KBF price level; i.e.x&'! Pxer"/Pker!” for t = 1,...,39. The KBF price
index is listed below in Table 8hese econometrically based KBF price indexes can be
compared to our econometrically baselS price indexesdJeed that are listed above in
Table 5.

Now that we have imputed prices for the unavailable products, we can compute fixed
base and chained Fisher indexes using these prices for the unavailable products along
with the correspondin@ quantities. Denote these Fisher indexes for month t thabwse
imputed prices asdPand Richl for t = 1,...,39. These indexes are also listed in Table 8.

The econometrically based CES price indexes that are listed in Table 5 above used a
systems appra@h to the estimation of the CES utility function. But we used expenditure
shares as the dependent variables in this systems approach. What happens if we estimate
a CES utility function using prices as the dependent variables and using our one big
estimatig equation approacthat we used in this section? We conclude this section by
answering this question.

72 As usual, the Rfor the 39 product n equations was defined as the square of the correlation coefficient
between the actual @duct n prices and their predicted counterparts using equations (90). For the prices of
the 20 observations where a product was not available, we used the predicted prices in place of the actual
prices. Thus the Hs overstated for products 2, 4 and 12.

#The sample average expenditure shares of these fouvoRucts was 0.026, 0.026, 0.043, 0.025 and
0.050 respectively. Thus these low@gRoducts are relatively unimportant compared to the high expenditure
share products.
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Equations (6y above used shares as the dependent variables whenmetedthe CES
utility function. Take theth share equation defined by jGhdmultiply both sides of the
period t equation by'/g;'. This leads to the following system of estimating equations:

(93) p'=[eYql[2i (gY)S" n=1° 2n (ga")T] + 3! t=1,..,39j=1,..,18.

Now stack the ab@ 702 equations into a single estimating equation and drop the 20
observations whera'gr 0. We assume (for simplicity) that all err@'sare independently
distributed normal variables with means 0 and variagéeAs usual, we sétio= 1. Call

this Model 15. We estimated the resulting nonlinear system of equatanilodel 15
using the Nonlinear option in Shazam. For starting values for the regression, we used the
estimated®, from Model 3 and set s = 1 (which corresponds to the linear utilityitumct

The initial log likelihood was equal to 165.039 and the final log likelihood was equal to
483.834. This final log likelihood can be compared to our final log likelihood from the
KBF Model 14, which was substantially higher at 568.877. The singldiequ& was
0.9393, which is below the single equatiohfi@m Model 14, which wa8.9527.The 18
estimated2,” were as followgwith t statistics in brackets).99 (15.2), 0.92 (15.2), 1.04
(15.6), 1.05 (15.6), 1.22 (15.7), 1.49 (15.7), 1.08 (15.7), B12), 0.50 (14.5), 0.47
(14.6), 0.73 (15.2), 0.85 (15.4), 1.09 (15.0), 1.31 (15.8), 0.52 (15.0), 1.13 (15.6), 1.31
(15.7) and 1.01 (15.6)Ihus the highest quality products are 6, 14 and 17 while the
lowest quality products are 10, 9 and 15. The estichagarameter was S = 0.85365
(157.24) This is virtually identical to our estimate for s from Modelwhich usedthe
systems approach to CES utility function estimation) which @&8%374 Thus the
corresponding elasticity of substitution was virtually identical whether we use the
systems approach or the single equation approach to estimation. However, it turns out

that the price index that is implied by our newly estimated CES utility function is not
identical to the CES implicit price index that appsd in Table 5 above. The parameter s
is virtually identical in the two CES utility function models but the estimaed
coefficients differ enough to generatemewhatdifferent implicit price indexes as we
shall see.

The month t utility level or aggregate quantity level implied by tMew Single equation
CES Model 15, @:sn, is defined as follows:

(94) QcesN ! [' n=1® 20" (gn)STYS" t=1,...,39.

The correspondindVew CES (unnormalized) implicit price level, PcesN’, is defined as
period t sales of the 19 product$§,divided by the period t aggregdtew CES quantity
level, Qesn:

(95) Pegsh™ ! et/QCEsr\f ; t=1,...,39.

The month tNew CES price index, Pces, is defined as the monthGESN price level
divided by the month TESN price level; i.e., Besh ! Pcesn/Pcesnt” for t = 1,...,39.
The CESN price index is listed below in Table. &his econometrically base@€ES
implicit price indexcan be compared to oaarlierutility function economérically based
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CESimplicit price indexPuced that wadisted above in Table %:or convenience, we list
it again in Table 8.

It will turn out that we can define estimates of the change in the true cost of living index
due to changes in the availability of products in our KBF framework in a manner that is
similar to that used by Feenstra. In order to accomplish this task, we need to define
various Fisher price indexes that make use of the predicted prices that result from the
estimation of Model 14. The first of these additional Fisher indexes' iwtich uses the
predicted or imputed prices for the missing products (along with the associated O
guantities) along with the actual prices and quantities for the remaining products to
produce a fixed base Fisher price index. Using the same data, we can produce a chained
Fisher price index, &#+". These indexes are listed in Table 8 beldte next two Kher

price indexes are the fixed base and chained maximum overlap Fisher indexed P

Prcrt that were defined earlier in Section 5 above. These indexes are listed in Table 1 and
are listed again in Table 8 belowhe finaltwo Fisher indexesre the fxed base and
chained Fisher price indexes;sRand Rech, that use theredicted prices for all products

and all time periods defined by equations (90), which in turn are generated by the Model
14 estimated KBF utility function. It turns out that thesgeixes are identical and are also
equalto the corresponding KBF price indexesgd®, that are directly defined by the
estimated utility function; see equations (92), which define ¥B¢'P €/Qxsr* which in

turn are normalized to define thesP. Thus we have &r' = Pe# = Pepcit for all t. All of

these indexes are listed in Table 8.

Table 8: The KBF Implicit Price Index, Alternative CES Implicit Price Indexes and
Various Fisher Price Indexesusing KBF Imputed Prices for Unavailable Products

Month  Pxgr' Pcesy Puces Pe! Pech' Pe' Peicn' Pep!

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.98816 1.01088 0.98359 1.00218 1.00218 1.00218 1.00218 0.98816
0.99734 1.01402 1.00369 1.02342 1.01124 1.02342 1.01124 0.99734
0.93078 0.95254 0.93029 0.93388 0.94265 0.93388 0.94265 0.93078
0.92749 0.92981 0.93074 0.93964 0.93715 0.93964 0.93715 0.92749
1.02000 1.03087 1.01226 1.03989 1.04075 1.03989 1.04075 1.02000
1.04222 1.05991 1.04046 1.05662 1.10208 1.05662 1.10208 1.04222
1.19800 1.20432 1.19753 1.15739 1.26987 1.15739 1.26987 1.19800
1.14801 1.14958 1.13261 1.15209 1.24778 1.15165 1.24727 1.14801
10 1.14946 1.15154 1.12326 1.14617 1.24137 1.16081 1.24528 1.14946
11 1.13863 1.13028 1.10248 1.14088 1.22950 1.1386 1.23033 1.13863
12 1.10858 1.10373 1.10469 1.12760 1.22009 1.10951 1.22091 1.10858
13 1.08290 1.08843 1.05886 1.10698 1.20731 1.11511 1.20813 1.08290
14 1.11953 1.12064 1.09361 1.13419 1.23863 1.14803 1.23948 1.11953
15 1.04018 1.03928 1.03612 1.05579 1.15978 1.04086 1.16056 1.04018
16 1.04081 1.04520 1.03616 1.05099 1.15371 1.04836 1.15449 1.04081
17 0.94930 0.96493 0.93755 0.98640 1.08568 0.99410 1.08642 0.94930
18 0.86479 0.87948 0.86830 0.89490 0.98385 0.89105 0.98452 0.86479
19 0.87354 0.878®6 0.87013 0.89032 0.99122 0.87308 0.99189 0.87355
20 0.88231 0.88500 0.86511 0.89016 0.99104 0.88051 0.99193 0.88231
21 0.88333 0.90573 0.88722 0.89453 1.00061 0.88920 1.00150 0.88333

O©CO~NOOUTA,WNPEF
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22 0.85408 0.87541 0.84505 0.85466 0.95983 0.86217 0.96068 0.85408
23 0.87493 0.90000 0.86932 0.88842 0.97730 0.87981 0.97902 0.87493
24 0.88535 0.89766 0.87123 0.88930 0.96178 0.89357 0.96347 0.88535
25 0.79866 0.80271 0.78295 0.80421 0.88017 0.80050 0.88172 0.79866
26 0.83066 0.83631 0.80363 0.84644 0.91938 0.83026 0.92100 0.83066
27 0.87815 0.89563 0.88298 0.88641 0.98171 0.88749 0.98344 0.87815
28 0.79681 0.79846 0.77627 0.81528 0.90580 0.82665 0.90739 0.79681
29 0.85006 0.85211 0.83908 0.85705 0.95671 0.85086 0.95839 0.85006
30 0.83602 0.83604 0.81745 0.84508 0.94446 0.85383 0.94612 0.83602
31 0.86528 0.86982 0.85125 0.87333 0.97386 0.87411 0.97557 0.86528
32 0.89165 0.89127 0.89022 0.89973 1.00016 0.92038 1.00192 0.89165
33 0.91245 0.90245 0.87329 0.92673 1.02452 0.92404 1.02632 0.91245
34 0.94661 0.95715 0.93999 0.95385 1.05227 0.95012 1.05412 0.94660
35 1.04573 1.05575 1.02941 0.98690 1.10820 0.99422 1.11014 1.04573
36 0.95051 0.95953 0.94062 0.96237 1.08529 0.95568 1.08719 0.95051
37 1.04791 1.05833 1.01774 1.04948 1.18995 1.04808 1.19204 1.04791
38 1.08860 1.08352 1.05781 1.09545 1.21560 1.10279 1.21773 1.08860
39 0.92639 0.93053 0.90282 0.94999 1.05918 0.95071 1.06104 0.92639

It can be seen that the first three econometrically based price indexes are all quite close to
each otherin fact, it is dfficult to distinguish Rgr' from Pcesn while our Section 5 CES

price index Bced tends to be slightly below the first two indexes (which both use prices
as the dependent variables in their regressionisg. tWo chained indexdsmsed on actual

price daa, the maximum overlap chained Fisher ind®xcr', and the chained Fisher
index that uses the estimated reservation prices from ModdPelA, suffer from a
considerale amount of upward chain drift (most of which occurs between months 8 and
9). The Hsher fixed base and chained indexes that use predicted prices from Model 14
everywherePr# andPepch, are bothexactly equal to ¢t as theory requiresThe fixed

base Fisher index that used the KBF reservation prices for unavailable progtctasP
generally a bitabove ResN throughout the sample period and ended up.250717*

Chart 10below plots thdirst 7 price indexes listed in Table 8.

"“The sample means ok#, Pcesv, Puces P and Rich were 0.9658, 0.9730, 0.9540, 0.9743 and 1.059
respectively. The correlation coefficients afefy Puces Pr and Ricn with Per were 0.9968, 0.9940,
0.9877 and 0.9366 respectively.
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It can be seen that tio chained Fisher indexes are well abovedtter indexes. It can

also be seen that the remaining indexes are not all that different. Thus in particular, the
easy to calculate fixed base maximum overlap Fisher price indexrévides a
satisfactory approximation to the theoretically more desirikee base Fisher index:P

that used imputed reservation prices for the missing products.

Some other conclusions that we can draw from the above Table and Chart igthat P
and ResN approximate each other quite closely. Both of these indexes seel loa
estimating a direct purchaser utility function, using observed prices as the dependent
variables. Bced is also fairly close to our preferred indexsP where Rced is also

based on estimating a CES purchaser utility function but sales shaeesiseer as the
dependent variables in the estimating equations.

FeenstraOs methodology for measuring the benefits and costs of changing product
availability basically assumes that with the help of some econometric estimation (i.e., the
estimation of thelasticity of substitution), it is possible tmlculate the purchaser@set

cost of living index. It is also possible talculate an exact index for the cost of living
index for the maximum overlap universeaus dividing the true cost of living by the
maximum overlap cost of living, Feenstadtains an index that can be interpreted as the
net benefits of the changing availability of products between the two periods being
compared. We can apply a variant of this methodology in the present siti#dmving
estimated reservation prices for the missing products, we can calculate a comprehensive
Fisher chain link index going from periotltto period t, which is f:n/Prici! 1. Holding

product availability constant, we can calculate the corresponding dh&irfor the
maximum overlap Fisher index for the products that are present in both periods, which is
Pecht/ Pecil 1. These indexes are listed in Table 8 abduee ratio of these twimdexes is
defined adollows:
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(96) lkee' ! [Peich/Prich” J/[Pech/Pech Y] ; t=23,...,T.

This indexcan be interpreted as a OcorrectionO index which when multiplied by the
readily calculatednaximum overlagndex Rcil/Pecii’? gives us the OtrueO chain link
index Prichl/Prici 1, or it can be interpreted as the amount of bias in the maximum
overlap chain link index due to changes in the availability of prodlibts.index can be
calculated for our data set using the information @gRand Rcr' listed above imable 8.
When the availability of products increageecreasesyoing from period'tl to t, we
expect ker' to be lesggreater)than one and. " Iker! is an estimate of the percentage
decrease (increase) in the cost of living due to the increased dsletyavailability of
productsf the availability of products is constant over period4 tand t, thendee! will

be equal to 1. Thus the periods whesgg'ldiffers from 1 in our data set are periods 9, 10,
11, 20 and 23. The values feaet for theseperiods are listed in Table 9 below.

Table 9: Alternative Bias Indexes for Fisher Maximum Overlap Chain Link Indexes
Using KBF Imputed Prices for Unavailable Products and Using KBF Imputed
Prices for All Products

t | kee! |kee"

9 0.99960 0.99836

10 1.00355 1.00124

11 0.99754 0.99847

20 1.00021 1.00294

23 1.00086 0.99988
Product 1.00176 1.00088

We expectedker! to be less than 1 for periods 9, 11 and 23 when product availability
increased and to be greater than 1 for periods 10 and 20 wbdacp availability
decreased. Howevethe month 23 value wdggr?® = 1.00086 which is greater than unity

so the increased availability of product 12 in month 23 led tte@waase in the cost of

living rather than @ecrease as expected. The producttbe 5 nonunitary values foksr!

t was 1.00176 (see the last row of Table 9) and so the overall increase in the availability
of products led to a smaltcrease in the cost of living over the sample period equal to
0.176 percentage points, rather thadearease as was expectedince our estimated

KBF utility function is not exactly consistent with the observed data, these kinds of
counterintuitive results can occur.

One method for eliminating anomalous results is to replace all observed prices by their
predicted prices (anaf courseuse predicted prices for the missing product pricEisg
comprehensiv@redictedFisher chain link index going from periodtitto period tusing

actual quantities igand predicted pricesi'p defined by definitions (90) bve is
Pepct/Precit t = Ped/Ped’t = Pyer/Pxert' . Define Rpwcrt as the maximum overlap
chained Fisher price index that uses actual quantities gnd the predicted prices ip
defined by (90) aboveHolding product availability constant, we can cédte the
corresponding chain link for thimaximum overlap Fisher indaxsing predicted prices
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for the products that are present in both periods, whichpigedPervich!’ & The ratio of
these two link indexeis defined asusr'":

(97) lkee™ ! [Perch/Perctt Y/[Premch/Peemcnt Y] ; t=23,..,T.

This index caralsobe interpreted as a OcorrectionO index which wheiphedltby the
maximum overlap indexising predicted pricesPeemcn/Prrvicn’’, gives usthe OtrueO
chain link index Pech'/Percrt which is exactly consistent with our Model 14 estimated
KBF utility function. Alternatively,it can be interpreted @ estimator fothe amount of
bias in the maximum overlap chain lifkisher index using predtted pricesdue to
changes in the availability of products. When the availability of products increases
(decreases) going from periddLtto t, we expectkkr to be less (greater) than one and 1
" Ikert is an estimate of the percentage decrease (imreathe cost of living due to the
increased (decreased) availability of produds. was the case withkde!, if the
availability of products is constant over periodsltand t, thenkes" will be equal to 1.
Thusthe periods wheree” differs from1 in our data set amggainperiods 9, 10, 11, 20
and 23. The values fokde" for these periodare listed in Table 9 above

Again, we expectedkee” to be less than 1 for periods 9, 11 and 23 when product
availability increased and to be greater tHarfior periods 10 and 20 when product
availability decreased. Our expectations were realized; there were no anomalous results
for the 5 periods. However, the product of the 5 nonunitary valudssférwas 1.00088

(see the last rownd columrof Table 9)and so the overall increase in the availability of
products led to a tinyucrease in the cost of living over the sample period equal to 0.088
percentage points, rather thar/@rease as was expected. Sinoer estimated product
prices are not entirely liable, this type of anomalous result can occur.

It is useful to compare our present estimates for the net benefits of increasing product
availability (equal to anet increase in the true cost of livingof either 0.176 or 0.088
percentage points) to oearlier net benefits that were generated by estimating the CES
unit cost (see Table 2) and the CH8ity function (see Table 6 Using theestimates

from Tables 2 and,Bve found that the overafllet reduction in the tue cost of living

using the CES futional form was about 0.93 for the unit cost function approach and
0.67to 0.79percentage points for the utility function appraéth

Two important tentative conclusions can be drawn from the results in this section:

¥ The CES methodology that is vely used to estimatthe gains from increased
product availabilityikely overstates the benefits from such increases.

S Since the Model 4 and 15 estimaigdoefficients are virtually identical, the net gains from increased
product variety will be similarUsing the Model 2 estimates for the estimated net reduction in the true

cost of living index over the sample period due to increased product availability wasiagpely 1.64
percentage points. However Model 2 used expenditure share equations to estimate the CES unit cost
function and we found that this model did not fit the data nearly as well as Models 4 and 15 so the resulting
estimated gains from increasipgpduct availability are not as plausible as the Model 4 and 15 results.
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¥ The chain drift problem associated with the use ofctie@nedSato Vartia index
in the Feenstra methodology can be substantial andirirexample, was much
more important than the gains and losses due to changes in product availability.
All of the chained indexes that we evaluated in the course of our calculations that
used actual price and quantity data were subject to substantiabcifiain

In the following section, we wiltlevelop an alternative methodology for estimating the
gains and losses from changes in product availatkitigt is based on the economic
approach to index numbeheory. This approach utilizes the estimated vielhaved
utility function so it has the drawback of being very much dependetiteoeconometric
estimation of thautility function. It has the advantage of being a much more transparent
approach that is anomaly free.

11. The Gains and Losses Due Bhanges inProduct Availability Revisited

In this section, we consider a somewhat more general framework for measuring the gains
or losses in utility due to changes in the availability of products. We suppose that we
have data on prices and quantities onsiles of N products for T periods. The vectors of
observed period t prices and quantities sold argm',...,s > On and ¢! [gd,...,quT >

On respectivelyfor t = 1,...,T. Sales or expenditures on the N products during period t are
! pg =$n=1" prlget > 0 for t = 1,..., 7 We assume that a linearly homogeneous utility
function, f(q,...,on) = f(g), has been estimated where#qOn.”” If product n is not
available (or not sold) during period t, we assume that the corresponding observed price
and quantity, g and @', are set equal to zeros.

We calculatereservation prices for the unavailable products. We also need to form
predicted prices for the available commodities, where the predicted prices are consistent
with our econometrally estimaed utility function and the observed quantity data, q
The period teservation or predicted price for product n, §", is defined as follows, using

the observed period t expendituré, the observed period t quantity vectéragd the
partial derivative of theestimated utility function f(q) as follows:

(98) pt" ! €, f(aY)/, an)/f(QY) ; n=1,.,N;t=1,.,T.

The prices defined by 8 are also RothbarthOs (194iual prices; they arethe prices
which rationalize the observed period t quantity vector as a solution to the period t utility
maximization problemSince f(q) is nondecreasing in its arguments drrel @ we see

that p" # O for all n and 2 If the estimated utility functio fits the observed data exactly

6 We also assume thdit=2" pi'ge' >0 fort = 1,...,T.

TWe assume that f(q) is a differentiable, positive, linearly homogeneous, nondecreasing and concave
function of g over a coneontained in the positive orthant. The domain of definition of the function f is
extended to the closure of this cone by continuity and we assume that observed quantity ‘vawors q
contained in the closure of this cone.

"8\We also assume that f(¢ O.
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(so that all errors in the estimating equations are equal ‘fal®n the predicted prices,
pn"", for the available products will be equal to the corresponding actual prices, p

Imputed expenditures on product n during period t are defined as‘fg.' for n = 1,...,N.
Note that if product n is not sold during period 4,0 and henceqiq.' = 0 as well.
Total imputed expenditures for all products sold during period t,eare defined as the
sum of the individual prduct imputed expenditures:

(99) € I $n=aN pnant; t=1,..T
= $n=1N gnt €], f(qY)/, an]/f(qY) usingdefinitions (B)
=¢

where the last equality follows using the linear homogeneity of f(q) since by EulerOs

Theorem on homogeneous functions, we have f(§-=" on , f(q)/, gn. Thus period t
imputed expenditures! gare equal to period twal expenditures'.e

The above material sets the stage for the main acts: namely how to measure the welfare
gain if product availability increases and how to measure the welfare loss if product
availability decreases.

Suppose that in perioti1, prodwct 1 was not available (so that'¢§= 0) , but in period t,

it becomes available and a positive amount is purchased (soi'thad)q Our task is to

define a measure of the increase in purchaser welfare that can be attributed to the increase
in commodiy availability.

Define the vector of purchases of products during period t excluding purchases of product
1 as gi'! [02,08,...,aY. Thus ¢ = [gi,q 1. Since by assumption, an estimated utility
function f(q) is available, we can use this utiliin€tion in order to define thezgregate

level of purchaser utility during period t, U, as follows:

(100) u'! f(g’) = f(on',qt 1).

Now exclude the purchases of product 1 and define the (diminished) utilitythe
utility generated by the remainingctor of purchases; €} as follows:

(101) U: 1t I f(O,q 1t)
%f(q1',;: 1Y) since f (q) is nondecreasing in the components of q
=u using definition (9.

Define the period t imputed expenditures on products excluding product I, €1", as
follows:

(102) e 1" ! $n=2N prtgnt
=e" pgrt using (®)

" This assumes that observed prices are the dependent variables in the estimating equations.
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%€ since p #0 and @' > 0.
Define the ratio of'@o e 1" as follows:

(103) 1! ele "
#1 using 02) and e1* > 0.

Multiply the vector of period t purchases excluding product 4, loy the scalaf.; and
calculate the resulting imputed expenditures on the véetprt:

(104) $n=" P (110" = 11$n=N pa gt

(105) $n=2" P (110nY) = 11$n=N p gt

=Le using definition (10)
= [ele1"]e. 1! using definition (18)
=é.

Using the lineehomogeneity of f(q) in the components of g, we are able to calculate the
utility level, uait, that is generated by the vecfiag; 1* as follows:

(1%) UA1t [ f(0,11q; 1t)
= 14f(0,q. 1Y) using the linear homogeneity of f
= 11u: 1 using ddinition (101).

Note thatl; can becalculated using definition (B) and ui' can becalculated using
definition (1QL). Thusuai! can also be readily calculated.

Consider the following (hypothetical) purchaserOs period t aggregatenaximization
problem where product 1 is not available and purchasers face the imputed pricésfor
products 2,...,N and the maximum expémne on the N1 products is restricted to be
equal to or less than actual expenditures on all N products during period t, which is e

(107) maxqodf(0,q2,0,...,0n) : $n=2" pnl'cn %€} | st
# Ua1'

where u1! is definel by (103). The inequality in (¥} follows because (#) shows that
11q: 1'is a feasible solution for the utility miaxization problem defined by (I

Now consider the followingeriod t unconstrained utility maximization problem using
imputed prices and actual expenditute e

(108) maxqodf(q 1,020, Q) * $n=1" pn” g %€}.
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The first order necessary conditiéhfor the observed period t quantity vectbtagsolve
(108) are as follows:

(109) 71(q) =1"p" ;
(110) p' gt =¢€

where7 f(q!) is the vector of first order partial derivatives of f evaluated abdl” is the
optimal Lagrange multiplier. Take thenier product of both sides of (@Q0with ¢ and
solve the resulting equation fbr = -7 f(q')/p"-q' = ¢f-7 f(q")/& where we have used9p
which also shows that gatsfies the constraint (D). EulerOs Theorem on homogeneous
functions implies that'ey f(g') = f(qf) and sol” = f(q)/€. Replacel” in equations (19)

by f(qf)/e andwe find that the resulting equatioase equivalent to equations8f9 Thus

gt solves (08) and we have the following results:

(112) f(q") = maxqodf(q 1,020, ..,0N) : $n=1" pn" 0] %€}

# Uyt

where u' is the optimal level of utility that is generated by a solution to the constrained
period t utility maxmization problem defined by (¥). The inequality in 111) follows
since any optimal solution for (ZP is only a feasible solution for the unconstrained
utility maximization problem defined by (8D. The inequalities (107) and (I)limply

the following inequalities:

(112) ut# us' # uait.

We regard ' as an approximation ta'uand it is also a lower bound for‘u Given that

an estimated utility funadn f(q) is on hand, it is easy to compute the approximate utility
level 1t when product one is not available. The actual constrained utility ledelyill

in general involve solving numerically the nonlineaogramming problem defined by
(107). For he KBF functional form, instead of maximizing"fm)*? we could maximize

its square, BAg, andthus solving (1@) would be equivalent to solving a quadratic
programming problenwith a single linear constrainfFor the CES functional form, it
turns out tlat there is no need to solve 7)Gsince the strong separability of the CES
functional form will imply that & = ua:' and the latter utility level can be readily
calculated.

A reasonable measure of the gain in utility due to the new availability of girddun
period t,G4!, is the ratio of the completely unconstrained level of utilitiouhe product
1 constrained levelily i.e., definethe product 1 utility gain for period t as

(113) Gi'! ufut# 1

80 Since f(q) is a concave function of g over the feasible region, these conditions are also sufficient.
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where the inequality follows from (11). The caerespondingproduct 1 approximate
utility gain is defined as:

(114) Ga'! Ufua'# Gt # 1

whetre the inequalities in () follow from the inequalities in (). Thus in general, the
approximate gain is an upper bound to the true Gafnn utility that is due to the new
availability of product 1 in period t.

Now consider the case where product 1 is available in period t but it becomes unavailable
in period t+1. In this case, we want to calculate an approximation to the loss of utility in
period t+1 die to the unavailability of product 1 in period tHowever, it turns out that

our methodology will not provide an answer to this measurement problem using the price
and guantity data for period t+1: we have to approximate the loss of utility that eull oc

in period t due to the unavailability of product 1 in period t+1 by looking at the loss of
utility which would occur in period t if product 1 became unavailablece we redefine

our measurement problem in this way, we can simply adapt the inequhbtiege have
already established for period t utility to thes of utility from the unavailability of
product 1 from the previous analysis for faén in utility.

A reasonable measure of the hypothetical loss of utility due to the unavailability of
product 1 in period t, 1, is the ratio of the product 1 constrained level of utilifytaithe
completely unconstrained level of utility 10 the product 1. We apply this hypothetical
loss measure to period t+1 when product 1 becomes unavailabléefieetie product 1

utility loss that can be attributed to the disappearance of product 1 in period t+1 as

(115) L1 ugt/ut %1

where the inequality followsrom (111). The correspondingroduct 1 approximate
utility loss is defined as:

(116) LA™t ! uar¥/ut %L1 %1

where the inequalities in (b1 follow from the inequalities in (2. Thusin general, the
approximate loss is an lower bound to the Otrue@4f&ss utility that can be attributed
to thedisappearancef product 1 in period+1. As was the case with our approximate
gain measure, if f(q) is a CES utility function, then'l= L.

If f(q) is the linear utility function that we estimated in Model 3 above, then it can be
shown that all of the above gain and loss measuresqaad ® unity; i.e., there are no
utility gains and losses from changes in product availability because each product is a
perfect substitute for every other product. Thus the cliggeis to a linear functionthe
smaller will be the gains and losses tluehanges in product availability.

It is straightforward to adapt the above analysis from product 1 to product 12 and to
compute the approximate gains and losses in utility that occur due to the disappearance of
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product 12 in period 10, its reappeararin period 11, its disappearance in period 20 and

its final reappearance in period 23. These approximate losses and gains are denoted by
La12'% Ga12't, La12?° and Gui2?2 and are listed in Table X0r both our final KBF Model

14 and for our CES Model 1% is also straightforward to adapt the above analysis to
situations where two new products appear in a period, which is the case for our products
2 and 4 which were missing in period$8 and make their appearance in period 9. The
approximate utility gim due to the new availability of these products is denotedaby’G

and this neasure is also listed in Table U6ing the estimated utility functions for both

our final KBF and CES models. We also list the product of theseafipeoximategain

and lossstmates for both models in Table.10

Table 10 Gains and Losses of Utility that can be Attributed to Changes In Product
Availability Holding Expenditure Constant

KBF CES
Gaz4® 1.00127 1.00746
La2t®  0.99748 0.99512
Ga2!!  1.00304 1.00529
La2?®  0.99881 0.99644
Ga2?®  1.00078 1.00296
Product 1.00138 1.00724

The CES model implies that the net effect of changes in product availability is to increase
purchasersO utility by approximately 0.724 percentage points while the KBF model
implies a muchsmaller increase 00.138 percentage poiritsThis is only one set of
experimental calculations but the above results indicate that the net gains in utility
predicted for increases in the availability of products by the CES madslbstantially
overstage the benefits of increased product varietihe results in the present section
reinforce the results that we obtained in the previous sectien the Feenstra
methodology tends to overstate the benefits from increased product variety.

We conclude thisection with a brief discussion of HausmanOs (2003e4fctly valid
cost (or expenditure) function approach to the estimation of reservationfpaicesve
explain why we did not use it in the present study.

81 Recall that the estimated reduction in the true cokviofy that was generated by the CES Model 4 due

to increased product availability was 0.79 percentage points which is approximately equal to a utility
increase of 0.79 percentage points. This agrees nicely with our present estimate of a 0.72 perg@&ntage po
utility increase.

82 Hausman (1996; 217) (1999; 190) and Hausman and Leonard (2002; 248) for expositions and
applications of his cost function methodology. Note that he did not assume homotheticity so his cost
function framework was more general thée unit cost function approach that we are using. We believe
that the assumption of homothetic preferences which can be represented by a linearly homogeneous utility
function is an appropriate one for a statistical agency since the resulting price levetiependent of the

levels of demand, which is a very useful property for macroeconomic applications of the resulting price
indexes.
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Instead of attempting to estimate a diretlity function, we could attempt to estimate a
more general unit cost function than the CES unit cost function. Denote the more general
unit cost function as c(p) where! p[p,pz...,mN] ! [p1,p: 1] where p1 is the set of prices
excluding the price ofnpduct 1. Assuming that c(p8 positive, nondecreasing, linearly
homogeneous and concave over the positive offhamd assuming all products are
present in period t, the estimating equations for period t are the following ones:

(117) o' = c(p)e/e(p) + 3 n=1,.,N

where ¢ and p are the observed quantity camprice vectors for period € is total
expenditure on the N commodities during the peaind 6(p") ! , c(p)/, pnforn=1,...,N

Now suppose product 1 is not available during period t. Then the N period t estimating
equations are replaced by the following N equations:

(118) on' = ca(pa™,p: 1) ec(pt,p: 1) + 3" n=1,..N

where @' = 0 and g is thereservation price that will drevdemand for product 1 down

to 0 in period t. It can be seen thaf s effectively arextra unknown parameter which

must be estimated along with the other patansein the unit cost function c(p).
Typically, the resulting estimating equations become very nonlinear and difficult to
estimate and so it becomes necesgasya practical mattetp dropal/l N estmating
equations defined by (8L Thus the econometiam is reduced to using the estimating
equations for periods wheté! products in the group of products are available. In many
situations, this will greatly reduce the available degrees of freedom and in some cases,
lead to no degrees of freedom at akkviery period has a missing product. Contrast this
situationwith the methodology that we have used for Models55we only needed to

drop the missing product estimating equations using our primal approach instead of
having to drop all estimating equatsifor any period which had one or more missing
products®

In the following section, we turn to a discussion of another approach that Hausman took
to generate estimates for the gains and losses due to changes in product availability.

11. Our Approximate Loss from Decreased Product Availability versus HausmanQOs
Approximate Loss for the Case of Two Products

83 We extend the domain of definition of c(p) to the nonnegative orthant by continuity.

84 There is another reason why wigl not pursue HausmanOs cost function methodology very far in this
paper. The simplest unit cost function is a linear one but this corresponds to a zero elasticity of substitution
model which as we have seen fits the data rather poorly in the prestmit aohere we expect closely
related products to exhibit a considerable degree of substitutability. We could have generalized the linear
unit cost function by assuming the KBF functional form for the unit cost function. But because the linear
cost functiorfits the data so poorly, we suspect that a semiflexible KBF functional form would not fit the
data as well as the KBF semiflexible functional form for the utility function. This utility functional form
starts off with the perfect substitutes case whithtfie data much better than the linear (no substitution at

all) cost function.
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Hausman (1999; 191) (2003; 2pyesented a very simple ar@asy)to implement
methodology for calculating theapproximateloss of consumer spius due to the
disappearance of a product. The framework is a partial equilibrium one where he drew an
inverse demand curve for say product pas Di(q1) where g is the quantity of product

1 purchased when its price is.. pHausmanformed a first order Taylor series
approximation to this demand curve around the poitit (p°) which corresponds to a
period when product 1 was availablde assumedhat the demand curve is downward
sloping and when ig= 0, the corresponding virtual demand price iS.pThe linear
approximation to the actual inverse demand function goes through dltes @t the point

4," where4:" ! pi" + &qi" and& ! ", Di(qi")/, g1 > 0O is the absolute value of the slope of

the inverse demand curve evaluated at qu”. Hausman tookhe area of the triangle
below the linear approximation to the true inverse demand function but above the line p
= pi" as his approximate measure of the loss in consumer surplus that would occur if
product 1 were no longer available during the period uodesiderationWe scale the

utility level f(qi",p") so that it equals expenditurefer the period. Thus we have:

(119) f(or', ) =€ ! prap + p2'e.

Define the Hausman approximate loss measure as a fraction of the period t expenditure e
as follows:

(120) Lu! " (1/2)@41 " p)ai'/e

=" (1/2)&(01")4€e
= (1/2s";

where " is the share of product 1 in total expendituresmpe’, and the inverse
elasticity of demand at the observed equilibrium point is definedas

(121) ; ! [g:/py'], Du(@r'), g =" [91'/p:1& <O.

When Hausman turnetiis approximate loss measure into an approximate gain measure
due to increasesiproduct availability, he foundery large gains for his empirical
examplesNote that largenagntude estimates for the inverse elasticity of demandlill
translate into large losses@insumer surplu$ product 1 is made unavailable

We now adapt our loss model presented in the previous section to the case of only 2
commodities. We will deriveirfst and second order Taylor series approximations to our
loss measure and compare these approximations to the Hausman agigroxiss
measure defined by (10We assume that the utility function f(g) is twice
continuously differentiable in this semt.

We suppose thapurchasers have maximized the utility functionii§g in a period
where they face prices’p> 0 and p' > 0 where f satisfies our usual regularity conditions
plus differentiability The optimal quantities are’> 0 and g > 0. These prices and
guantities satisfyequations (19) andthe optimality conditions @ which we rewrite
using our present notation as follows:
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(122) p{f(q{,q{) = e: fl(q{,qz:) ;
(123) pz f(0a ,a2') = €fa(n’, )

where é! pi'gi” + p’"” > Ois observed expenditure the period under consideration
and f(q:",a") ! , f(q:",")/, g for n = 1,2.Using our utility €aling assumption (B9, it
can be seen that equations (122) and3)1gmplify to p* = fi(ou',") and p° =
f2(qi",2"). Now corsider a model where we reduce purchases dbgn to 0. We do this
in a linear fashion holding prices fixed at their initial levels, p". Thus we travel along
the budget constraint until it intersects theags. Henceyp is an endogenous variabié;
is the following function of gwhere q starts at g= ¢" and ends up ater O:

(124) qp(cn) ! [€"" pr'aul/p2’.
The derivative of g(q) is ge1) ! , g2(qe)/, g =" (p2'/p2’), a fact which we will use later.

Define utility as a function of igfor 0 %q: %q:’, holding expenditures on the two
commodities constant at,es follows:

(125) u(an) ! f(qs,0p(qn)).
We use the function u{jjto measure the purchaser loss of utility as we mewem its

original equilibrium level of ¢ to 0. Thus ouloss of utility due to the disappearance of
product 1 as a fraction of optimal expenditusedefined as follows:

(126) L! [u(cn) " u(Q)/e’.

Using our saling of utility assumption (M), we can observe(ai’) = f(ou", ") = €. We
approximate u(0) bw first order Taylor series approximation around the paint g

(127) u(0)9 u(e’) + ufq’)(0" an’)

=u(a’) " ou'[faon’, ") + fo(an", "), Oz2(cn)/, aal differentiating (13)
=u(") " ou'faon’, ) + fa(an’, ") (" pr'/p2’)] differentiating (12)
= u(@) " aufpy + p2 (" pr/p2)]f(ar 2 )E using (122) and (13
= u(a).

Thus to the accuracy of a first order approximation totrilee loss of utility that can be
attributed to the disappearance of product 1, we h&vé.L

The second order derivative of w(gevaluated at « is given by the following
expression:

(128) u<fan’) = fua(on’, ") + 2fiz(qn’, 0") (" pa'/p2’) + foo(on’,q2") (" pr/p2’)?
200

where the inequality follows since the matrix of second order partial derivatives of
f(q1",q2") is negative semidefinite using the concavity of,ffg). Thus to the accuracy of
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a second order approximation to ttree loss of utility that can be attributed to the
disappearance of product 1, we have:

(129) L 9 (1/2) uton”)cu'2/e” %0.

If the underlying utility function is linear (so that all products are perfect substitutes),
then it can be seen that there esapproximate loss of utility due to the disappearance of
product 1 (since all of the second order partial derivatives giifjaare equal to O in this
case).In the case of a linear utility function, there is no loss of utility if we take away the
possbility of purchasing product 1 since the two products are perfect substitutes. In this
case, the approximate loss of utility is equal to the actual loss of utility which in turn is
equal to 0.

We can express thepproximate loss defined by @Rin elasttity and share form if we
make a few definitions. We know thafqgi,p) ! , f(qi, )/, g is the marginal utility of
product i for i = 1,2. Thusjfgi, ) ! , 2(qu%)/, g, q is the derivative of marginal utility
I with respect to g We can turn this sead order partial derivative of the utility function
into aunit free elasticity 3j(qi,0p) by multiplying fj(q:,02) by g/fi(qw,p):

(130) 3i(q, ) ! [aiffi(qe, )i (02, 0) ; ijz

We also need to make use of some identities that the second order partial derivatives of
the linearly homogeneous utility function f satisfiddsing EulerOs Theorem on
homogeneous functions, the following two identities hold:

(131) f11(ql*,CI2*)q1* + flz(ql*,q2*)q2* =0;
(132) f21(q1*,q2*)Q1* + fzz(ql*,q2*)q2* =0.

YoungOs Theorem from calculus also implies théd:f,op) = faa(or’, ). Using this
relationship along with (131) and @Bimplies the following relationships between the
second ordepartial derivatives of f:

(133) froon’, ") = faa(on’, ") = faa(on”, 0" )(" au'/02);
(134) f2o{n", ") = fraon’, ) (" qr'/0R")? .

Now substitute (133) and (134) into @2n order to obtain the following expression for
u<gay):
(135) uan’) = fra(qn', ) + 2faz(0n’, G ) (" Ppr/p2’) + faz( ', ) (" pr /p2)?

= fua(a, )1 + 2(qr /P2 q2) + (g /p2 o))

= fu(qy, @)1 + (87/2)]?

where § ! pn'gn’/€ for n = 1,2. Sincesfi(q”,q2") %0, u<g:’) %0 as well. Using (13),
we can write fi(cn”,¢") in elasticity form agollows:

(136) fua(on', ") = 3ua(on’, 2 )f1(as", ")/ o’
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= 3o, ") f(ar’, ")/ ai' € using (12)
= 3o, 0" )pr /o using (1D).

Finally, substitute (135) and (136) into @2and our second order approximation to the
loss of utility due to thevithdrawal of product 1 becomes the following expression:

(137) L9 (1/2)31(qr", " )s1[1 + (3'/s2")]? %0.

If 91" is small,thenthe above second order approximation to the loss of utility will be
quite accurate. Ifif(g:",02") = 08% then the elsticity 311(q1",2") equalsO aswell and the
approximate loss will beequal to 0.Formula (13) is our counterpart to HausmanOs
approximate loss function defined by (AR

We conclude this section by considering some alternative partial equililniodels for

the (inverse) demand function for product 1,95 Di(q1). We can then calculate the
resulting partial derivative of this function at our observed equilibrium point,
, D1(q1")/, au, and then evaluate how the approate Hausman loss defined by2Q)
compares to ouspproximate loss defined by (43

The two inverse demand functions that give us virtual (or equilibrium) prices as functions
of quantities purchased and total expenditure on the two products e are the following
functions:

(138) p1 = dh(qu,p,e)! efi(or,)/f(q1,00);
(139) p = (q1,02,€) ! efo(n, R)/f(q1,0p).

We want the partial equilibrium function; p Di(q:) holding other variables constant.
But what exactly arenese other variables that one should looldstant?

The simpést choiceof variables to hold constantts hold ¢ and e constant. In this case,
Di(qu) = di(cn,cp,e) where gand e are held constant. In this case,(q:’)/, g1 is equal
to the following expression:

(140) , Da(qr)/, qr = [€faa(an’, 0 )/f(0s",0p")] " [€7f1(an", ") ?/f(a1 )]
=fu(ag, ) " (pr)Ye using (119) and (12
= 3o, 0" )(pr /an”) " (pr")Y€E using (119) and @0).

Thus the elasticity defined by (12) above becomes the following expression:

(141); ! [g1'/p1"], Da(ar")/,
= [0 /pr T[3ua(an, @ ) (o fon') ™ (pa')?/€] using (140)
=3u(q, %) " (pr'on'/€)
= 3o, )" s

85 This condition means that the marginal utility of product 1 is constantinergases. It also means that
locally, products 1 and 2 are perfect substitutes.
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Since311(q1", ") %0 and § > 0, we see that < 0. Thus holding gland e constant leads
to the followirg Hausman type approximate loss due to the unavayabilproduct 1:

(142) Ly ! (1/2)s"; = (1/2)3"[3u(0r", ) " 1] <O.

This measure of approximate loss will tend to be larger in magnitude than our measure of
approximate loss defined by @_gif 311(c1",¢") is close to 0.

However, holding g and e constant is not what Hausman had in mind as constant
variables. He worked in a cost function framework so specializing his more general
framework to our homogeneous preferences model leads to a model where expenditure e
is a function of prices and thélity level; i.e., e = c(p,p2)u where c(pp2) is the unit cost
function that is dual to the utility function u = (). Thus we havehe following
equilibrium relationships in the period where both products are available:

(143) € = c(p',p2)u"; on” = cu(pa’,p2 U’ ; G2 = Ga(pr’,p2 U’

where é is total expenditure, > 0 is optimal demand for product n for n = 1,2 and
ca(pa’,p2) !, c(pr,p2)/, pn for n = 1,2. Hausman holds utility constant and increases the
price of product 1 to§ > pi" where p” is the virtual price that drives the Hicksian
demand for product 1 down to 0 so that Oup«€ ,p2")u’. The higher price of product 1
means that purchasers now have to spénd &(p.”,p.')u’ > € to achieve the same
utility level U that the attained before product 1 was withdrawn from the marketplace.
Thus the Hausman exact loss in measured as the expenditure diffefehag, vehereas

our exact loss concept was a utility difference.

The variables that Hausman holds constant are thiy lgVel u and the price of product
2, . Endogenous variables arg ¢ and e while the driving variable is which goes
from p" to ;™ while o goes from g to 0. We can model his framework in our direct
utility function model as followsregard G ! f(gi',qp") and p" as fixed exogenous
variables, p, @ and e as endogenous variables andsgthe driving exogenous variable.
The constraint that utility remain constant as we decreaserq ¢ to 0 is the following
one:

(144) f(au,0p(qn)) = f(on",p") = €.

Thus we again scale utility so that initial utility f{ap") is equal to initial expenditure;.e
Define @(qy) as the impkit function which satisfies (). The derivative of this implicit
function is defined by differentiating f(@p(g1)) = € with respect to g Thus we find
that:

(145) op<qr’) =" fa(on', 0 )/f2(0n’, ") =" pa'/p2’

wherethe second equation in (145) follows from (144) and (138) anfl) ((&ir two
inverse demand functions) evaluated at the initial lggwum. We take the second
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invere demand function defined by @3and set it equal to the constanf, pVe solve
the resulting equation for expenditure as a function oé(@):

(146) e(q) ! p2'f(q1,0p(an))/f2(01, G(cn))
= P2 €/f2(q, () using (14).

Differentiate (14) with respect to gin order to determine the derivativéeg”). We find
that

" [p2' € /p2?)[f21(qn’, ") + f2zan’, 02 ") G0 )] using (13)
" [€/p2 [f21(an”, ") + f22(an”, ") (" p1'/p2")] using (14).

(147) etay)

We can now define our Hausman partial equilibrium first (inverse) demand fungtion p
D1(qu) by replacing gand e in definition (13) by @(q:1) and e(@):

(148 D) ! e(on)fa(ow, ge(an))/f(d2,0p(c))
= e@uf1(gw,o(qn))/€ using (14).

Calculatethe derivative of the partial equilibrium inverdemand function defined by
(148 at q":

(149, Dy(an')/, qu =" [pa /€€’ /p2 |[f 21(01", ") + f2o(an’, G ) (" Pr /2 )]

+ [e(q)/€]fuu(on’, ") + fro(an', G )G ’)] using (14)
= [f22(00", ") (" po/p2") + fo2an, 07 (" pa /P2 )] + [Fra(an’, ") + fao(an’, G )G )]
=fu(gn, ") + 2fi(an’, ) (" po/p2") + (G, ) (" 1 /p2)?
= uqr’) where &q:") was defined by (18
= fu(an", )1 + (37/2)]? using (1%).

Thus the Hausman approximate loss for this partial equilibriemmathd derivatie
defined by (149turns out to be:

(150 Ln ! (1/2)an’[, Da(on”)/, cu]/e”
= (1/2)q fua(on", )1 + (8'/)] %€ using (149
= (1/2) 8" 3u1(qr",")[1 + (3'/2)]?

where the elasticitynarginal utility elasgity 311(q.",¢¢") is defined agg:"/p:")f1a(0n”, ).

This is a rather surprising result: HausmanOs first order triangle consumer surplus
approximate approach to measuring the loss due to the withdrawal of a product turns out
to be exactly equal to our@md order approximation loss of utility approach when there
are only 2 products!

12. Conclusion

There are many tentative conclusions that can be drawn from the computations
undertaken in this paper:
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¥ The Feenstra CES methodology for adjusting maximum overlap chained price
indexes for changes in product availability is very much dependent on having
accurate estimates for the elasticity of substitution. The gains from increasing
product availability a& very large if the elasticity of substitutionis close to one
and fall rapidly as the elasticity increases.

¥ It is not a trivial matter to obtain an accurate estimate(fowhen applying
traditional consumer demand theory to actual data, it is comnuanptahave
expenditure shares as the dependent variables and product prices as the
independent variables. When this framework was applied to our grocery store data
set using the CES functional form for the unit cost function, we found that the
equation byequation fit was poor. An alternative econometric specification was
used to estimat@ CES utility function wheresalesshares are functions of
guantities in this specification. We found that this specification fit the data much
better and the resulting tamate for( was much larger than the corresponding
estimate fo( when we used the CES unit cost function specification.

¥ A major purpose of the present paper was the estimation of Hicksian reservation
prices for products that were not available in a gkrla the CES framework,
these reservation prices turn out to be infinite. But typically, it does not require an
infinite reservation price to deter a consumer from purchasing a prddws.we
estimated the utility function f(d) (q"Ag)*?, which was dginally introduced by
KonYs and Byushgens (1926). They showed that this functional form was exactly
consistent with the use of Fisher (1922) price and quantity indexes so we called
this functional form the KBF functional form. The use of this functiomainf
leads to finite reservation prices, which can be readily calcutated the utility
function has been estimated

¥ We indicated how the correct curvature conditions on this functional form could
be imposed and we showed that this functional form enafkexible functional
form which is similar to the normalized quadratic semiflexible functional form
introduced by Diewert and Wales (198§1988)

¥ We initially estimated the KBF functional form using expenditure shares as
dependent variables and quaestias the conditioning variables. We used the
usual systems approach to the estimation of a system of inverse demand equations.
However, we found that existinglgorithms for thenonlinear systems of
equations boggeddown using this approach because thpreach requires the
estimation of the elements of symmetricvariancecovariance matrix plus the
elements of the symmetric matrix A.

¥ Thus we stacked the estimating equations into a single (big) equation and
estimated the unknown parameters in the A matsig sales shares as the
dependent variables using a semiflexible approach. This approach required the
estimation of only one variance paraméter.

¥ The one big equatiosemiflexibleapproach worked in a satisfactory manidris
approach also allowed ut drop the observations that correspond to the

86 Of course, his approach has the disadvantage of not accounting adequately for heteroskedasticity and
possible correlation between the various product equation error terms.
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unavailable productdVe ended up getting useful estimates for the parameters in
the A matrix.

However, when we used our estimated utility function to construct fitted prices
for the available products (andtienated reservation prices for the unavailable
products), we found that the fitted prices were not nearly as close to the actual
prices as were the fitted sales shares to the actual sales shares. This was an
unsatisfactory development since if the fitjgdces are not close to the actual
prices for products that are present, it is unlikely that the reservation prices for
unavailable products would be close to the OtrueO reservation prices.

Thus in section 10 above, we switchfedm the one big equation ppach that

had shares as dependent variables to a one big equation approach that had actual
prices as the dependent variabMedels 14 and 15 estimated the KBF and CES
utility functions using this alternative approach.

It turned out that the one big wation Model 15 generated almost the same
estimate for lte elasticity of substitution foa CES utility function that was
generated by the systems approach to CES utility function estimation, which was
Model 4. This was encouraging. These two CES utilityction models generated
implicit price indexes, Red for period t using Model 4 andckEs\ for period t

using Model 15. These two CES price indexes are plotted on Chart 9. They do not
differ by all that much.

The KBF utility function estimated by Mod#&# generated an implicit price index,
P«er for period t and this index is also plotted on Chart@r'Rs quite close to

its CES counterpart implicit (econometrically based) price indexsNP This
shows that the CES utility function model using psies the dependent variables
generates price and quantity indexes which are fairly close to the much more
complicated KBF price and quantity indexes, which is also an encouraging result.
However, the results presented in sections 10 and 11 indicate ehBedmstra

CES methodology for measuring the benefits of increases in product variety may
substantially overstatethese benefits as compared to osemiflexible
methodology.

Another major conclusion that follows from our analysis is that the chain drift
problem that arises in the scanner data context is perhaps a much bigger problem
than adjusting price indexes for changes in product vatiedur estimated
adjustments for changes in product variety were rather small as compared to the
large amount of chaidrift we found in all of ouchainedindexes that used actual
price and quantity daf.

In section 11, we developed a utility function based methodology for measuring
the net gains from net increases in product availability that is a counterpart to
HausnanOs expenditure or cost function based methodology.

In section 12, we restricted our model to the two product case and approximated
our utility based measure of the gains from increased product availability by a
second order Taylor series approximati¥vie then compared our approximate

87 Thus Keynes (1930; 106) was right to worry about the use of chained indexes generatidgfthain

88 See the Australian Bureau of Statistics (2016) and Diewert and Fox (2017) for a review of the use of
multilateral methods that could be used to control the chain drift problem. These papers did not address the
issues raised by changes in produdailability which is the focus of the present paper.
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measure to the approximate consumer surplus (or expenditure function) based
Hausman model of the gains from increased product availability and found that
our approximate measure coincided with his approximate measure i@ the
product case. Whether this equality persists in the N product case is an open
guestion.

Appendix A: The Frozen Juice Data
Here is a listing of the OmonEthO quantities sold of 19 varieties of frozen juice (mostly
orange juice) from DominickOs StorenSthe Greater Chicago area, whea OmonthO

consists of sales f@r consecutive weeks.

Table A1: OMonthlyO Quantities Sold for 19 Frozen OJ Products

Montht qgi' g qd (g g8 g¢ g/ g8 gd

t t

2 4
1 142 0 66 0 369 85 108 163 90
2 330 0 299 0 1612 223 300 211 171
3 453 0 140 0 675 206 230 250 158
4 132 0 461 0 1812 210 430 285 194
5 87 0 107 0 490 210 158 256 159
6 679 0 105 0 655 163 182 250 170
7 53 0 260 0 793 178 232 287 135
8 141 0 100 0 343 117 115 174 154
9 442 123 191 108 633 153 145 168 265

10 524 239 204 125 544 129 184 320 390
11 34 19 204 179 821 131 225 427 1014
12 52 32 79 85 243 117 89 209 336
13 561 247 124 172 698 139 200 340 744
14 515 266 206 187 660 120 188 144 153
15 87 56 131 161 240 109 144 141 93
16 325 111 130 195 372 151 169 176 105
17 444 154 294 331 1127 146 271 219 127
18 588 175 203 229 569 159 165 250 133
19 476 264 122 156 175 130 131 282 85
20 830 276 198 181 669 132 149 205 309
21 614 208 166 156 309 115 165 141 186
22 764 403 172 165 873 94 240 206 585
23 589 55 144 163 581 118 181 204 1010
24 988 467 81 122 178 81 128 315 632
25 593 236 230 184 1039 111 215 240 935
26 55 42 296 313 1484 81 465 413 619
27 402 273 113 121 199 114 127 129 849
28 307 81 390 236 976 107 359 357 95
29 57 96 157 168 771 105 262 85 116
30 426 289 188 191 755 121 181 121 211
31 56 70 399 246 783 116 387 147 105
32 612 487 110 94 222 109 130 129 118
33 40 42 552 470 1114 114 574 150 120
34 342 253 177 265 424 98 235 139 157




35 224 132 185 230 437 84 211 160 413

36 78 51 152 214 557 97 231 395 637

37 345 189 161 130 395 95 173 146 528

38 76 22 155 237 355 113 172 121 246

39 89 80 363 242 921 111 363 185 231
Montht qid  qu' 017 i3 qud  Qis  ud 17 Qi Qud
1 45 174 109 2581 233 132 126 107 50 205
2 109 351 239 983 405 452 1060 207 198 149
3 118 325 303 1559 629 442 343 199 123 313
4 143 263 322 1638 647 412 1285 195 324 75
5 121 514 210 3552 460 265 769 175 471 1130
6 89 424 206 865 482 314 1001 113 279 652
7 93 531 232 981 495 280 2466 206 976 59
8 108 307 201 1752 366 201 932 109 362 503
9 185 376 189 2035 366 233 170 103 98 658
10 346 381 0O 694 399 290 764 81 236 760
11 811 286 210 1531 363 273 201 98 81 598
12 252 511 112 4054 292 295 626 138 171 297
13 180 569 392 1330 296 277 145 181 98 268
14 113 424 187 786 367 317 414 93 172 535
15 99 388 186 2828 242 242 755 109 226 323
16 68 259 299 1981 392 263 708 177 124 344
17 58 271 305 888 478 306 750 169 191 54
18 60 245 303 2217 403 681 1216 97 259 61
19 52 360 155 2266 309 190 1588 113 424 473
20 274 232 0 1983 320 214 183 181 105 323
21 154 1027 0 2152 328 190 720 122 245 49
22 402 539 0 1514 242 155 1280 95 394 23
23 841 309 109 1216 271 145 1186 94 170 94
24 531 272 126 1379 288 143 558 112 208 66
25 607 290 127 3240 254 125 153 77 53 634
26 549 314 138 1227 235 128 758 81 354 40
27 236 391 162 2626 334 155 483 130 437 118
28 75 265 164 681 361 135 1158 83 628 562
29 94 329 163 1620 362 159 1030 97 483 608
30 107 436 185 546 395 154 1161 144 672 1210
31 72 494 205 1408 368 142 1195 129 701 314
32 79 482 156 490 318 2522 1208 100 870 337
33 59 436 169 1265 300 103 401 61 267 151
34 96 391 171 2112 353 100 546 85 323 112
35 354 389 175 715 343 83 2342 117 941 346
36 541 406 141 2523 344 85 340 83 314 155
37 498 283 109 684 177 64 91 33 107 169
38 151 305 151 366 259 89 396 94 203 415
39 237 321 118 1392 218 118 515 100 353 67
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It can be seen that there were no sales of Products 2 and 4 for m&ndinsl there were
no sales of Product 12 in month 10 and in month20Thus there is a new and
disappearing product problem for 20 observations in this data set.

The corresponding monthly unit value prices for the 19 products are listed in Table A2.

Table A2: OMonthlyO Unit Value Prices for 19 Frozen OJ Products

Montht  pi P2 ps' p4 ps' Pé' p7 ps' pe

1.4700 1.7413 1.7718 1.7831 1.7618 2.3500 1.7715 0.9624 0.7553
1.4242 1.5338 1.3967 1.5378 1.4148 2.3500 1.5460 1.0900 0.8300
1.4463 1.5433 1.5521 1.7782 1.5734 2.3000 1.6413 1.0900 0.5856
1.5200 1.5476 1.37%8 1.3872 1.4004 2.3000 1.3793 1.0623 0.6701
1.5200 1.5688 1.6900 1.6933 1.6900 2.2929 1.6900 1.0900 0.6208
1.4457 1.3659 1.8854 1.8155 1.8821 2.5895 1.8761 1.0900 0.5900
1.9753 1.7326 1.8546 1.9018 1.8793 2.7500 1.8332 1.0140 0.8300
1.7040 1.9%62 2.0900 2.1594 2.0900 2.7415 1.9600 1.0778 0.8300
1.6299 1.9900 1.8575 1.9085 1.8195 2.7437 1.9315 1.0796 0.8089
10 1.5505 1.5615 1.8410 1.8980 1.8253 2.7500 1.8987 0.9469 0.8148
11 1.9900 1.9900 1.6763 1.6420 1.6169 2.7500 1.6402 0.9549 0.7061
12 1.9900 1.9900 2.0900 2.0900 2.0900 2.7500 2.0900 0.9828 0.9509
13 1.3649 1.3977 1.8682 1.7993 1.7476 2.7500 1.7625 0.8900 0.5866
14 1.4506 1.5073 1.6992 1.7691 1.7120 2.6200 1.7389 1.0900 0.9600
15 1.9900 1.9900 1.7648 1.7186 1.7317 2.4900 1.7706 1.0609 0.9600
16 1.4712 1.4224 1.6305 1.6483 1.6498 2.4900 1.6578 1.0139 0.9600
17 1.2599 1.2559 1.3500 1.3618 1.3264 2.2600 1.3626 0.9900 0.8053
18 1.0567 1.0936 1.4213 1.4440 1.4096 2.2600 1.4962 1.0200 0.7880
19 1.1596 1.1683 1.7000 1.7000 1.7000 2.2600 1.7000 0.9900 0.9600
20 1.0301 1.0823 1.4442 1.4660 1.3573 2.1800 1.4930 1.0305 0.6120
21 1.1281 1.2025 1.4536 1.4700 1.4580 2.0104 1.4635 1.0900 1.0234
22 1.0125 1.0472 1.4437 1.4860 1.4168 2.0079 1.4900 1.0308 0.7609
23 1.4800 1.4800 1.3969 1.4263 1.3570 2.0200 1.4188 1.0307 0.5900
24 0.9450 0.9738 1.5100 1.5100 1.5100 2.0200 1.5100 1.0900 0.5900
25 1.0594 1.1084 1.1844 1.1794 1.0661 2.0200 1.2077 1.0900 0.5900
26 1.4800 1.4800 1.1127 1.1559 1.1414 2.0200 1.1404 1.0900 0.5900
27 1.2160 1.2293 1.51®M 1.5100 1.5100 2.0200 1.5100 1.0900 0.5900
28 1.2174 1.3010 1.1100 1.1729 1.0923 2.0200 1.1537 0.6494 0.5900
29 1.4800 1.4800 1.4278 1.4341 1.3872 2.0200 1.4201 1.1631 0.5900
30 1.1285 1.1453 1.3092 1.3659 1.2811 2.0200 1.3580 1.0764 0.5900
31 1.5621 1.5600 1.3231 1.3803 1.3454 2.1457 1.3270 1.1244 0.5900
32 1.2363 1.2396 1.7900 1.7900 1.7900 2.3900 1.7900 1.1800 0.5900
33 1.7800 1.7800 1.0770 1.1653 1.0963 2.3900 1.1322 1.1800 0.5900
34 1.3830 1.3775 1.4778 1.4867 1.5261 2.3900 1.5043 1.1327 0.5900
35 1.4171 1.4518 1.4543 1.5537 1.5382 2.3900 1.5952 1.1631 0.5900
36 15910 1.5786 1.5532 1.5398 1.4620 2.1500 1.5465 0.8458 0.5900
37 1.3687 1.3859 1.6586 1.6811 1.6694 2.3492 1.7132 0.9334 0.6464
38 1.7100 1.7100 1.6161 1.6002 1.5986 2.3700 1.5945 1.3000 0.6500
39 1.4603 1.4793 1.1428 1.2318 1.1204 2.3700 1.2161 1.0822 0.6500
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Montht  pid p1d P12 P13 p1d P15 P16 P17 Pis P1g

1 0.7553 0.9095 1.2900 1.0522 1.7500 0.6800 1.7900 1.9536 1.7900 1.4939

2 0.8300 0.9900 1.2900 1.3500 1.7500 0.680 1.4400 1.7578 1.5637 1.4117

3 05280 0.9900 1.2567 1.2776 1.6112 0.6616 1.6126 1.7528 1.5827 1.3792

4 0.6685 0.9900 1.2900 1.1900 1.5900 0.6700 1.3081 1.7095 1.3033 1.4200

5 0.6203 0.8600 1.2900 1.1342 1.5900 0.6700 1.2620 1.7094 1.2607 0.9233

6 0.5900 0.9386 1.2900 1.3842 1.8386 0.7809 1.1895 2.1489 1.4238 1.0674

7 0.8300 0.8393 1.2900 1.4900 1.8900 0.7900 1.2303 2.0555 1.2249 1.9300

8 0.8300 0.9900 1.2900 1.2886 1.9442 0.8291 1.9709 2.2717 1.9699 1.6333

9 0.8088 0.9900 1.1900 1.3496 2.0500 0.85 1.9600 2.4521 1.9600 1.4278
10 0.8123 0.9900 1.6087 1.5900 2.0500 0.8500 1.6045 2.4394 1.6057 1.4213
11 0.7201 0.9900 1.2900 1.4443 2.1464 0.8693 1.9600 2.4165 1.9600 1.4451
12 0.9519 0.8624 1.2900 1.1177 2.1900 0.8900 1.7284 2.3697 1.7579 1.9300
13 0.7683 0.8392 1.0765 1.4161 2.1900 0.8900 1.9600 2.2900 1.9600 1.5737
14 0.9600 0.9419 1.2034 1.5822 2.0855 0.8581 1.4810 2.4470 1.5627 1.4748
15 0.9600 0.9900 1.2900 1.1207 2.0500 0.8500 1.4155 2.3524 1.4374 1.5472
16 0.9600 1.0403 1.2900 1.2071 2.0500 0.8500 1.3793 2.2900 1.5192 1.4954
17 0.7881 1.0600 1.1671 1.3867 1.7668 0.8363 1.2925 2.2900 1.3198 1.7467
18 0.7693 1.0954 1.1179 1.0587 1.6900 0.6332 1.0697 2.0818 1.1456 1.6800
19 0.9600 1.1300 1.4100 0.9647 1.6900 0.7900 1.0330 1.8900 1.0922 1.313
20 0.5834 1.1300 1.5388 0.9677 1.6900 0.7900 1.5000 1.8353 1.5000 1.3311
21 1.0214 0.9632 1.0364 0.9629 1.5900 0.7500 1.2542 1.8367 1.2507 1.6082
22 0.7542 1.0334 1.3301 1.0506 1.6239 0.7642 1.0378 1.8900 1.0599 1.5200
23 05900 1.1500 1.4500 1.0693 1.5900 0.7500 1.0352 1.8900 1.1490 1.2094
24 05900 1.1500 1.4500 1.0820 1.5900 0.7500 1.3423 1.8293 1.3476 1.4200
25 05900 1.1500 1.4500 0.8743 1.5900 0.7500 1.5000 1.8212 1.5000 1.0178
26 05900 1.1500 1.4500 1.0347 1.5900 0.7500 1.0331 1.8270 1.1024 1.4200
27 05900 0.9300 1.2300 0.9812 1.5900 0.7500 1.3609 1.8277 1.3589 1.3242
28 0.5900 0.9300 1.2300 1.2500 1.5900 0.7500 1.0296 1.8900 1.0339 1.0153
29 0.5900 0.9300 1.2300 1.0406 1.5900 0.7500 1.0489 1.8900 1.0344 1.0204
30 0.5900 0.9300 1.2300 1.2500 1.5900 0.7500 1.0194 1.8372 1.0219 1.0071
31 0.5900 0.9300 1.2300 1.1474 1.5900 0.7500 1.0485 2.0130 1.0533 1.0597
32 0.5900 0.9300 1.2300 1.3500 1.5900 0.4023 1.1019 2.2900 1.0672 1.2422
33 0.5900 0.9300 1.2300 1.2567 1.5900 0.7500 1.5768 2.2900 1.5630 1.5311
34 05900 0.9300 1.2300 1.0672 1.5900 0.7500 1.4765 2.2900 1.4829 1.5900
35 0.5900 0.9300 1.2300 1.3500 1.5900 0.7500 1.5100 2.2054 1.5082 1.3474
36 0.5900 0.9300 1.2300 1.0735 1.5900 0.7500 1.6709 2.2599 1.7327 1.5279
37 0.6464 1.0146 1.3335 1.2864 1.9099 0.9103 1.7535 2.4782 1.7560 1.4474
38 0.6500 1.0200 1.3500 1.5300 1.9700 0.9400 1.5549 2.2212 1.5702 1.3701
39 0.6500 1.0200 1.3500 1.2288 1.9700 0.9400 1.3916 2.3875 1.3794 1.6400

The actualprices p!' and p! are not availabléor t =1,2,...,8 since products 2 and 4 were
not sold during these months. However, in the abbafele, we filled in these missing
prices with the imputed reservation prices that were estimated in Section xx. Similarly,
p:12t was missing for months t = 12, 28] and 22 and again, we replaced these missing
prices with the corresponding estimated imputed reservation prices in TablEh&2.
imputed prices appear in italics in the above Table.

The following Table lists the sales sbarof the best selling prochs along with total
salesé' ! p'-qt of the 19 products in each monffhe best selling products were products
1,5, 11, 13, 14, 15, 16, 18 and 19.

Table A3: Total Sales or Expenditures andsales Shares of Best Selling Products
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t e st S st sid Siat S5 Si6t S S

1 5968.15 0.0350 0.0000 0.0196 0.0000 0.1089 0.0335 0.0321 0.0263 0.0114
2 10027.65 0.0469 0.0000 0.0417 0.0000 0.2274 0.0523 0.0463 0.0229 0.0142
3 8741.65 0.0750 0.0000 0.0249 0.0000 0.1215 0.0542 0.0432 0.0312 0.0106
4 11449.F7 0.0175 0.0000 0.0554 0.0000 0.2216 0.0422 0.0518 0.0264 0.0114
5 10899.81 0.0121 0.0000 0.0166 0.0000 0.0760 0.0442 0.0245 0.0256 0.0091
6
7
8

9120.39 0.1076 0.0000 0.0217 0.0000 0.1352 0.0463 0.0374 0.0299 0.0110

11602.34 0.0090 0.0000 0.0416 0.0000 0.1285 0.0422 0.0367 0.0251 0.0097

9435.49 0.0255 0.0000 0.0222 0.0000 0.0760 0.0340 0.0239 0.0199 0.0136
9 9932.26 0.0725 0.0246 0.0357 0.0208 0.1160 0.0423 0.0282 0.0183 0.0216
10 9824.99 0.0827 0.0380 0.0382 0.0242 0.1011 0.0361 0.0356 0.0308 0.0323
11 9941.34 0.0068 0.0038 0.0344 0.0296 0.1335 0.0362 0.0371 0.0410 0.0720
12 10591.60 0.0098 0.0060 0.0156 0.0168 0.0480 0.0304 0.0176 0.0194 0.0302
13 9474.14 0.0808 0.0364 0.0245 0.0327 0.1288 0.0404 0.0372 0.0319 0.0461
14 8816.27 0.0847 0.0455 0.037 0.0375 0.1282 0.0357 0.0371 0.0178 0.0167
15 8713.10 0.0199 0.0128 0.0265 0.0318 0.0477 0.0312 0.0293 0.0172 0.0103
16 8942.04 0.0535 0.0177 0.0237 0.0359 0.0686 0.0421 0.0313 0.0200 0.0113
17 8837.16 0.0633 0.0219 0.0449 0.0510 0.1692 0.0373 0.0418 0.0245 0.0116
18 9214.45 0.0674 0.0208 0.0313 0.0359 0.0870 0.0390 0.0268 0.0277 0.0114
19 8979.63 0.0615 0.0344 0.0231 0.0295 0.0331 0.0327 0.0248 0.0311 0.0091
20 7768.64 0.1101 0.0385 0.0368 0.0342 0.1169 0.0370 0.0286 0.0272 0.0243
21 8075.62 0.088 0.0310 0.0299 0.0284 0.0558 0.0286 0.0299 0.0190 0.0236
22 9052.47 0.0855 0.0466 0.0274 0.0271 0.1366 0.0209 0.0395 0.0235 0.0492
23 8040.42 0.1084 0.0101 0.0250 0.0289 0.0981 0.0297 0.0319 0.0262 0.0741
24 7230.79 0.1291 0.0629 0.0169 0.0255 0.0372 0.0226 0.0267 0.0475 0.0516
25 9084.74 0.0692 0.0288 0.0300 0.0239 0.1219 0.0247 0.0286 0.0288 0.0607
26 8040.22 0.0101 0.0077 0.0410 0.0450 0.2107 0.0204 0.0660 0.0560 0.0454
27 8112.81 0.0603 0.0414 0.0210 0.0225 0.0370 0.0284 0.0236 0.0173 0.0617
28 7761.02 0.0482 0.0136 0.0558 0.0357 0.1374 0.0279 0.0534 0.0299 0.0072
29 7838.74 0.0108 0.0181 0.0286 0.0307 0.1365 0.0271 0.0475 0.0126 0.0087
30 8506.49 0.0565 0.0389 0.0289 0.0307 0.1137 0.0287 0.0289 0.0153 0.0146
31 8752.06 0.0100 0.0125 0.0603 0.0388 0.1204 0.0284 0.0587 0.0189 0.0071
32 8613.56 0.0878 0.0701 0.0229 0.0195 0.0461 0.0302 0.0270 0.0177 0.0081
33 7892.10 0.0090 0.0095 0.0753 0.0694 0.1547 0.0345 0.0823 0.0224 0.0090
34 8140.59 0.0581 0.0428 0.0321 0.0484 0.0795 0.0288 0.0434 0.018 0.0114
35 10813.31 0.0294 0.0177 0.0249 0.0331 0.0622 0.0186 0.0311 0.0172 0.0225
36 8586.06 0.0145 0.0094 0.0275 0.0384 0.0948 0.0243 0.0416 0.0389 0.0438
37 5580.64 0.0846 0.0469 0.0479 0.0392 0.1182 0.0400 0.0531 0.0244 0.0612
38 5702.95 0.0228 0.0066 0.0439 0.0665 0.0995 0.0470 0.0481 0.0276 0.0280
39 749191 0.0174 0.0158 0.0554 0.0398 0.1377 0.0351 0.0589 0.0267 0.0200

The following Table lists the sales shares of the 10 least selling products, which were
products 2, 3, 4, 6, 7, 8, 9, 10, drzd 17.

Table A4: Sales Shares of Least Popular Products

~—

S s st S6t st s So' Sidt st Sk
0.0000 0.0196 0.0000 0.0335 0.0321 0.0263 0.0114 0.0057 0.0236 0.0350
0.0000 0.0417 0.0000 0.0523 0.0463 0.0229 0.0142 0.0090 0.0308 0.0363
0.0000 0.0249 0.0000 0.0542 0.0432 0.0312 0.0106 0.0071 0.0436 0.0399
0.0000 0.0554 0.0000 0.0422 0.0518 0.0264 0.0114 0.0084 0.0363 0.0291
0.0000 0.0166 0.0000 0.0442 0.0245 0.0256 0.0091 0.0069 0.0249 0.0275
0.0000 0.0217 0.0000 0.0463 0.0374 0.02% 0.0110 0.0058 0.0291 0.0266
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7 0.0000 0.0416 0.0000 0.0422 0.0367 0.0251 0.0097 0.0067 0.0258 0.0365
8 0.0000 0.0222 0.0000 0.0340 0.0239 0.0199 0.0136 0.0095 0.0275 0.0262
9 0.0246 0.0357 0.0208 0.0423 0.0282 0.0183 0.0216 0.0151 0.0226 0.0254
10 0.0880 0.0382 0.0242 0.0361 0.0356 0.0308 0.0323 0.0286 0.0000 0.0201
11 0.0038 0.0344 0.0296 0.0362 0.0371 0.0410 0.0720 0.0587 0.0273 0.0238
12 0.0060 0.0156 0.0168 0.0304 0.0176 0.0194 0.0302 0.0227 0.0136 0.0309
13 0.0364 0.0245 0.0327 0.0404 0.0372 0.0319 0.0461 0.0146 0.0445 0.0438
14 0.0455 0.0397 0.0375 0.0357 0.0371 0.0178 0.0167 0.0123 0.0255 0.0258
15 0.0128 0.0265 0.0318 0.0312 0.0293 0.0172 0.0103 0.0109 0.0275 0.0294
16 0.0177 0.0237 0.0359 0.0421 0.0313 0.0200 0.0113 0.0073 0.0431 0.0453
17 0.0219 0.0449 0.0510 0.0373 0.0418 0.0245 0.0116 0.0052 0.0403 0.0438
18 0.0208 0.0313 0.0359 0.0390 0.0268 0.0277 0.0114 0.0050 0.0368 0.0219
19 0.0344 0.0231 0.0295 0.0327 0.0248 0.0311 0.0091 0.0056 0.0243 0.0238
20 0.0385 0.0368 0.0342 0.0370 0.0286 0.0272 0.0243 0.0206 0.0000 0.0428
21 0.0310 0.0299 0.0284 0.0286 0.0299 0.0190 0.0236 0.0195 0.0000 0.0278
22 0.0466 0.0274 0.0271 0.0209 0.0395 0.0235 0.0492 0.0335 0.0000 0.0198
23 0.0101 0.0250 0.0289 0.0297 0.0319 0.0262 0.0741 0.0617 0.0197 0.0221
24 0.0629 0.0169 0.0255 0.0226 0.0267 0.0475 0.0516 0.0433 0.0253 0.0283
25 0.0288 0.0300 0.0239 0.0247 0.0286 0.0288 0.0607 0.0394 0.0203 0.0154
26 0.0077 0.0410 0.0450 0.0204 0.0660 0.0560 0.0454 0.0403 0.0249 0.0184
27 0.0414 0.0210 0.0225 0.084 0.0236 0.0173 0.0617 0.0172 0.0246 0.0293
28 0.0136 0.0558 0.0357 0.0279 0.0534 0.0299 0.0072 0.0057 0.0260 0.0202
29 0.0181 0.0286 0.0307 0.0271 0.0475 0.0126 0.0087 0.0071 0.0256 0.0234
30 0.0389 0.0289 0.0307 0.0287 0.0289 0.0153 0.0146 0.0074 0.0268 0.0311
31 0.0125 0.0603 0.0388 0.0284 0.0587 0.0189 0.0071 0.0049 0.0288 0.0297
32 0.0701 0.0229 0.0195 0.0302 0.0270 0.0177 0.0081 0.0054 0.0223 0.0266
33 0.0095 0.0753 0.0694 0.0345 0.0823 0.0224 0.0090 0.0044 0.0263 0.0177
34 0.0428 0.0321 0.048f 0.0288 0.0434 0.0193 0.0114 0.0070 0.0258 0.0239
35 0.0177 0.0249 0.0331 0.0186 0.0311 0.0172 0.0225 0.0193 0.0199 0.0239
36 0.0094 0.0275 0.0384 0.0243 0.0416 0.0389 0.0438 0.0372 0.0202 0.0219
37 0.0469 0.0479 0.0392 0.0400 0.0531 0.0244 0.0612 0.05/7 0.0261 0.0147
38 0.0066 0.0439 0.0665 0.0470 0.0481 0.0276 0.0280 0.0172 0.0357 0.0366
39 0.0158 0.0554 0.0398 0.0351 0.0589 0.0267 0.0200 0.0206 0.0213 0.0319

The specific products (and their package size in ounces) are as follows: 1 = Florida Gold
Valencia (12); 2 = Florida Gold Pulp Free (12); 3 = MM Country Style OJ (12); 4 = MM
Pulp Free Orange (12); 5 = MM @I2); 6 = MM OJ (16); 7 = MM OJ W/CA (12); 8 =

MM Fruit Punch (12); 9 = HH Lemonade (12); 10 = HH Pink Lemonade (12); 11 = Dom
Apple Juie (12); 12 = Dom Apple Juice (16); 13 = HH OJ (12); 14 = HH OJ (16); 15 =
HH OJ (6); 16 = Tropicana SB OJ (12); 17Tropicana OJ (16); 18 = Tropicana SB
Home Style OJ (12); 19 = Citrus Hill OJ (12)

Appendix B: The Feenstra Double Differencing Appoach to the Estimation of a
CES Utility Function

In this Appendix, we drop the products that are not present in all periods in order to
simplify the econometric estimation procedure. Thus we drop products 2, 4 and 12 from
our list of 19 frozen juice pradtts. Thus in our particular application, the number of
products N will equal 16. We also renumber products so that the originatdeluct 13
becomes the Nth product in this Appendix. This product has the largest average sales
share.
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There are 3 sets ohriables in the model (i=1,....N;t=1,...,T):

¥ q'is the observed amount of product i sold in period t;

¥ ptis the observed unit value price of product i sold in period t and

¥ stis the observed share of sales of product i in period t that is eotestrusing
the quantities fjand the corresponding observed unit value pri¢es p

As we aggregate over time to constrtiet time period tnit value prices and if there is

price change within the time period, then the observed unit value pricesawelldome

time aggregation errors in them. Any time aggregation error will carry over into the
observed sales shares. Interestingly, as we aggregate over time, the aggregated quantities
sold during the period do not suffer from this time aggregation bias.

Our goal is to estimate the elasticity of substitution for a CES direct utility function f(q)
that was discussed in Sect8 and 6 inthe main text. This function is defined as
follows:

(B1) f(qz,...,an) ! [Bn=1" 20008

where the parameteps are positive and sum to 1 and s is a parameter which satisfies the
inequalities 0 < 1. The corresponding elasticity of substitution is defined ds
1/(1's). The system of share equations which corresponds to this purchaser utility
function was deriveds equations (33) in the main text which we repeat here:

(B2) si'! pnlon/$i=1N pitgit = 2n(gn)) =N 2i(GiY)S; t=1,...,T;n=1,..,N.

This system of share equations corresponds to the purchasersO system of mesde de
equations, which give purchasait valueprices as functions of quantities purchased. We
take natural logarithms of both sides of the equations in (B2) and add error teims e

order to obtain th&llowing fundamental set of estimating equations for Model 16:

(B3) Inst = In2; + sIng! + In[$n=1" 2In(g)T] + &t ; i=1,.,N;t=1,..T

where the gare masured without error and tleeror terms have 0 means and a classical
(singular) covariance matrix for thhares within each time period and the error terms are
uncorrelated across time periods. The unknown parameters in g@3the positive
parameter, and the psitive parameter s where 0 ¥&.

The error terms in equations (B3) reflect not only timeregation errors in forming the
monthly unit value prices but they also reflect the fact that our assumed CES functional
form for the purchasersO utility function may not be correctr@nthaximization of this

utility function may take place with errorsol¢ that we are also assuming that the error
terms are multiplicative error terms on the observed shares (before taking logs) rather
than the additive error terms that we have assumed in Section 6.



78

The Feenstra double differenced variables are definéddrstages. First we difference
the of thelogarithms of the s' with respect to time; i.e., defirges,' as follows:

(B4) 6! In(s) " In(s"'Y) ; n=1,.,N;t=23,...T.

Now pick productN as the numeraire product and difference Gls¢ with respect to
product N, giving rise to the followingpuble differenced log variable, ds:

(B5) ds'! 6" 6\ n=1.1,N=2.3,...,T
=In(s) " In(s"YH) " In(svh) " In(svtY).

Define thedouble differenced log quantity variables in a similar manner:

(B6) dapt! 600" 60N ; n=1.1,N=223,..,T
=1In(g) " In(aga" ) " In(an) " In(an®?).

Finally, define thelouble differenced error variables 3. as follows:
B33! et" el't" et+al't; n=1"INt=223,.T.

Using definitions (B5)(B7) and equations (B3), it can be verified that the double
differenced log shares dssatisfy the following system of (NL)(T"1) estimating
equationsinder our assumptions

(B8) ds' = sdgnt + 3t ; n=1,.,N1;t=23,...,T

where the new residual&i, have means 0 and a constant INby (N'1) covariance

matrix within a time period but are uncorrelated across time periods. Thus we have a
classical systerof linear estimating equations with only one unknown parameter across
all equations, namely the parameter s. This is the simplest possible system of estimating
equations that one could imagine!

Using the data listed in Appendix A, eave 15 product estiating equations of the form
(B8) which weestimated using the NL system commam&hazam. thus our N = 16 and
our T = 39. The resulting estimate for s Wa®6491(with a standard error of 0.006&nd
thus thecorrespondinggstimated is equal tol/(1"'s) = 7.4025 which isin line with our
earlierestimates fo( when we estimated the CES utility functiosing Models 4 and 15
The standard error onwas tiny using the present regression resss( was very
accurately determined using this methdtle equation by equatioR? were as follows
0.9936 0.9895 0.9905 0.9913 0.9869 0.9818 0.9624 0.9561 0.9858 0.9911 0.9934
0.994 0.9906 0.9921and0.9893 The average Ris 0.9859 which is very high for share
equations orfor transformations of sre equationsThe results are all the more
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remarkable considering that we have only one unknown parameter in the entire system of
(N"1)(T" 1) = 570 equation®.

Why are the fits so good in Model 16 as compared to our earlier Models 4 and 15 which
also estinated the CES utility function? keems likely that the explanation is the
assumption of multiplicative error terms in Model 16 as opposed to the assumption of
additive error termsvhich were assumad Models 4 and 15.
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